Have a personal or library account? Click to login
Connectedness and Continuous Sequences in Finite Topological Spaces Cover

Connectedness and Continuous Sequences in Finite Topological Spaces

Open Access
|Jun 2008

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  2. [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  3. [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  4. [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  5. [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  6. [6] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, 3(2):189-193, 1992.
  7. [7] Hiroshi Imura, Masami Tanaka, and Yatsuka Nakamura. Continuous mappings between finite and one-dimensional finite topological spaces. Formalized Mathematics, 12(3):381-384, 2004.
  8. [8] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
  9. [9] Yatsuka Nakamura. Finite topology concept for discrete spaces. In H. Umegaki, editor, Proceedings of the Eleventh Symposium on Applied Functional Analysis, pages 111-116, Noda-City, Chiba, Japan, 1988. Science University of Tokyo.
  10. [10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
  11. [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
  12. [12] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125-129, 2004.
  13. [13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
  14. [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
  15. [15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
  16. [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
  17. [17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
  18. [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  19. [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
DOI: https://doi.org/10.2478/v10037-006-0011-2 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 93 - 100
Published on: Jun 9, 2008
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2008 Yatsuka Nakamura, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 14 (2006): Issue 3 (September 2006)