Have a personal or library account? Click to login
E-Commerce Customers’ Preference Implicit Identification Cover

E-Commerce Customers’ Preference Implicit Identification

By: Tomasz Zdziebko  
Open Access
|Mar 2013

References

  1. Avery, C. & Zeckhauser, R. (1997, March). Recommender systems for evaluating ComputerMessages. Communications of the ACM, Vol. 40, Issue 3.10.1145/245108.245127
  2. Claypool, M., Le, P., Wased, M. & Brown, D. (2001). Implicit interest indicators. In Proc. 6th International Conference on Intelligent User Interfaces.10.1145/359784.359836
  3. Cooper, M.D. & Chen, H.-M. (2001). Predicting the Relevance of a Library Catalog Search, Journal of the American Society for Information Science, 52 (10).10.1002/asi.1140
  4. Jung, K. (2001). Modeling web user interest with implicit indicators, Master Thesis, Florida Institute of Technology, USA.
  5. Kelly, D. (2005). Implicit Feedback: Using Behavior to Infer Relevance. New directions in cognitive information retrieval, The Information Retrieval Series, Vol. 19, Section IV.10.1007/1-4020-4014-8_9
  6. Kelly, D. & Belkin, N.J. (2001). Reading time, scrolling and interaction: exploring implicitsources of user preferences for relevance feedback. In SIGIR ’01.10.1145/383952.384045
  7. Kim, H. & Chan, P.K. (2008). Implicit Indicators For Interesting Web Pages. Proceedings of International Conference on Web Information Systems and Technologies, Miami.
  8. Kim, K., Carroll, J.M. & Rosson, M. (2002). An Empirical Study of Web Personalization Assistants:Supporting End-Users in Web Information Systems. In Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environments. Arlington, USA.10.1109/HCC.2002.1046347
  9. Kim, Y.S., Yum, B.J., Song J. & Kim, S.M. (2005). Development of a recommender systembased on navigational and behavioral patterns of customers in e-commerce sites. Expert Systems with Applications Vol. 28, Issue 2.10.1016/j.eswa.2004.10.017
  10. Middleton, S.E., Shadbolt, N.R. & De Roure, D.C. (2003). Capturing Interest through Inferenceand Visualization: Ontological User Profiling in Recommender Systems. In Proceedings of the Second Annual Conference on Knowledge Capture.10.1145/945645.945657
  11. Miller, B.N., Riedl, J.T. & Konstan, J.A. (2003). GroupLens for Usenet: Experiences in ApplyingCollaborative Filtering to a Social Information System. In: C. Lueg, D. Fisher [Eds.], From Usenet to CoWebs: Interacting With Social Information Spaces. London: Springer Press.
  12. Morita, M. & Shinoda, Y. (1994). Information Filtering Based on User Behavior Analysis andBest Match Text Retrieval, In Proceedings of ACM Conference on Research and Development in Information Retrieval (SIGIR ’94), Dublin, Ireland.10.1007/978-1-4471-2099-5_28
  13. Nichols, D.M. (1997). Implicit Ratings and Filtering. In Proceedings of the 5th DELOS Workshop on Filtering and Collaborative Filtering, Hungary.
  14. Oard, D.W. & Kim, J. (2001). Modeling Information Content Using Observable Behavior. In Proceedings of the 64th Annual Meeting of the American Society for Information Science and Technology (ASIST ’01), USA.
  15. Seo, Y.W. & Zhang, B.T. (2000). A Reinforcement Learning Agent for Personalized In-formationFiltering, In Proceedings of the 5th International Conference on Intelligent User Interfaces, USA.10.1145/325737.325859
  16. Velayathan, G. & Yamada, S. (2005). Behavior Based Web Page Evaluation, Journal of WebEngineering, Vol. 1, No. 1.
DOI: https://doi.org/10.2478/v10031-012-0024-7 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 33 - 46
Published on: Mar 15, 2013
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 Tomasz Zdziebko, published by University of Szczecin
This work is licensed under the Creative Commons License.