Have a personal or library account? Click to login
Bifurcation, Chaos and Attractor in the Logistic Competition Cover

Bifurcation, Chaos and Attractor in the Logistic Competition

Open Access
|Jun 2012

References

  1. Bischi, G.I., Gardini, L. (2000). Global Properties of Symmetric Competition Models with Riddling and Blowout Phenomena. Discrete Dynamics in Nature and Society. Vol. 5, 149-160.
  2. Day, R.H. (1994). Complex Economic Dynamics. The MIT Press, Cambridge, Massachusetts.
  3. Elaydi, S. (1996). An Introduction to Difference Equations. Springer, New York.10.1007/978-1-4757-9168-6
  4. Elaydi, S. (2008). Discrete Chaos: With Applications in Science and Engineering. Chapman and Hall/CRC.
  5. Guzowska, M., Luis, R., Elaydi, S. (2011). Bifurcation and invariant manifolds of the logistic competition model. Journal of Difference Equations and Applications. Vol. 17, Issue 12.10.1080/10236198.2010.504377
  6. Kuznetsov, Y. (1995). Elements of applied bifurcation theory. Vol. 112 of Applied mathematical sciences, SV, New York.10.1007/978-1-4757-2421-9
  7. López-Ruiz, R., Fournier-Prunaret, D. (2004). Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type. Chaos, Solitons and Fractals, 24, 85-101.10.1016/j.chaos.2004.07.018
  8. Malthus, T.R. (1798). An Essay on the Principle of Population. Printed for J. Johnson, in St. Paul's Church-Yard. London.
  9. May, R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459-467.10.1038/261459a0
  10. Mira, C. (1987). Chaotic Dynamics. World Scientific, Singapour.10.1142/0413
  11. Mira, C., Gardini, L., Barugola, A., Cathala, J.-C. (1996). Chaotic Dynamics in Two- Dimensional Noninvertible Maps. World Scientific Series on Nonlinear Science. Series A, Vol. 20.10.1142/2252
  12. Puu, T. (1989). Nonlinear economic dynamics. In: Lecture notes in economics and mathematical systems, Vol. 336. Springer-Verlag.10.1007/978-3-662-00754-9
  13. Puu, T. (1991). Chaos in business cycles. Chaos, Solitons, & Fractals. 1,457-73.10.1016/0960-0779(91)90017-4
  14. Puu, T. (2000). Attractors, bifurcations, and chaos - nonlinear phenomena in economics. Springer-Verlag.
  15. Verhulst, P.F. (1845). Recherches mathématiques sur la loi d'accroissement de la population. Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles 18,1-42.
  16. Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal species living together. J. Cons. Int. Explor. Mer. 3 3-51.10.1093/icesjms/3.1.3
DOI: https://doi.org/10.2478/v10031-011-0039-5 | Journal eISSN: 1898-0198 | Journal ISSN: 1730-4237
Language: English
Page range: 7 - 18
Published on: Jun 28, 2012
Published by: University of Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2012 Małgorzata Guzowska, published by University of Szczecin
This work is licensed under the Creative Commons License.

Volume 10 (2011): Issue 2 (June 2011)