Have a personal or library account? Click to login
Artificial neural network to predict the natural convection from vertical and inclined arrays of horizontal cylinders Cover

Artificial neural network to predict the natural convection from vertical and inclined arrays of horizontal cylinders

Open Access
|Jan 2013

References

  1. 1. Kuehn, T.H. & Goldstein, R.J. (1980).Numerical solution to the Navier-Stokes equations forlaminar natural convection about a horizontal isothermal circular cylinder.Int. J. Heat MassTransfer. 23(7), 971-979.DOI:10.1016/0017-9310(80)90071-X.10.1016/0017-9310(80)90071-X
  2. 2. Wang, P., Kahawita, R. & Nguyen, T.H. (1990).Numerical computation of the natural convection flow about a horizontal cylinder using splines. Num. Heat Transfer. 17(2), 191-215. DOI:10.1080/10407789008944739.10.1080/10407789008944739
  3. 3. Saitoh, T., Sajiki, T. & Maruhara, K. (1993). Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder.Int. J. Heat Mass Transfer; 36(5), 1251-1259. DOI: 10.1016/S0017-9310(05)80094-8.10.1016/S0017-9310(05)80094-8
  4. 4. Corcione, M. (2005). Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array.Int. J. Heat Mass Transfer. 48(17), 3660-3673. DOI:10.1016/j.ijheatmasstransfer.2005.01.010.10.1016/j.ijheatmasstransfer.2005.01.010
  5. 5. Eckert, E.R.G. & Soehngen, E.E. (1948).Studies on heat transfer in laminar free convection with the Zehnder-Mach interferometer.AF Technical Report, 5747, USAF Air Material Command, Wright-Paterson Air Force Base, Ohio.
  6. 6. Tokura, I., Saito, H., Kisinami, K. & Muramoto, K. (1983). An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls. J. heat Transfer. 105, 102-107.10.1115/1.3245526
  7. 7. Marsters, G.F. (1972).Array of heated horizontal cylinders in natural convection. Int. J. Heat Mass Transfer. 15(5), 921-933. DOI:10.1016/0017-9310(72)90231-1.10.1016/0017-9310(72)90231-1
  8. 8. Lieberman, J. & Gebhart, B. (1969).Interaction in natural convection from an array of heated elements, experimental. Int.J. Heat Mass Transfer. 12(11), 1385-1396. DOI: 10.1016/0017- 9310(69)90023-4.
  9. 9. Rezvantalab, H., Ghazian, O., Yousefi, T. & Ashjaee, M. (2011). Effect of flow diverters on free convection heat transfer from a pair of vertical arrays of isothermal cylinders. Experimental Thermal and Fluid Science. 35(7), 1398-1408. DOI: 10.1016/j.expthermflusci.2011.05.008.10.1016/j.expthermflusci.2011.05.008
  10. 10. Ashjaee, M. & Yousefi, T. (2007). Experimental Study of Free Convection Heat Transfer from Horizontal Isothermal Cylinders Arranged in Vertical and Inclined Arrays. J. Heat TransferEngineering.28(5),460-471.DOI: 10.1080/01457630601165822.10.1080/01457630601165822
  11. 11. Sozen, A. & Arcaklioglu, E. (2007).Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27(2-3), 481-491.DOI: 10.1016/j.applthermaleng.2006.06.012.10.1016/j.applthermaleng.2006.06.012
  12. 12. Deng, S. & Hwang, Y. (2006).Applying neural networks to the solution of forward and inverse heat conduction problems. Int. J. of Heat and Mass Transfer.49(25-26), 4732-4750. DOI: 10.1016/j.ijheatmasstransfer.2006.06.009.10.1016/j.ijheatmasstransfer.2006.06.009
  13. 13. Zdaniuk, G.J., Chamra, L.M. & Walters, D.K. (2007).Correlating heat transfer and friction in helically-finned tubes using artificial neural networks.Int. J. of Heat and Mass Transfer 50(23- 24), 4713-4723. DOI: 10.1016/j.ijheatmasstransfer.2007.03.043.10.1016/j.ijheatmasstransfer.2007.03.043
  14. 14. Scalabrin, G. & Piazza, L. (2003).Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks. Int. J. of Heat and Mass Transfer 46(7), 1139-1154.DOI: 10.1016/S0017-9310(02)00382-4.10.1016/S0017-9310(02)00382-4
  15. 15. Diaz, G., Sen, M., Yang, K.T. & McClain, R.L. (2001). Dynamic prediction and control of heat exchangers using artificial neural networks. Int. J. of Heat and Mass Transfer.44(9), 1671-1679. DOI: 10.1016/S0017-9310(00)00228-3.10.1016/S0017-9310(00)00228-3
  16. 16. Chen, J., Wang, Kuan-Po. & Liang, M-Tsai. (2005).Predictions of heat transfer coefficients of supercritical carbon dioxide using the overlapped type of local neural network. Int.J. of Heat and Mass Transfer.48(12), 2483-2492. DOI:10.1016/j. ijheatmasstransfer.2004.12.040.
  17. 17. Hernández, J.A., Romero, R.J., Juárez, D., Escobar, R.F. & Siqueiros, J. (2009). A neural network approach and thermodynamic model of waste energy recovery in a heat transformer in a water purification process.Desalination. 243(1- 3), 273-285. DOI: 10.1016/j.desal.2008.05.015.10.1016/j.desal.2008.05.015
  18. 18. Hauf, W. & Grigull, U. (1970). Optical methods in heat transfer. Advances in Heat Transfer. 6, Academic Press, New York, 133-366.10.1016/S0065-2717(08)70151-5
  19. 19. Eckert, E.E.R.G. & Goldstein, R.J. (1972). Measurements in Heat Transfer.second edition, McGraw-Hill, New York, 241-293.
  20. 20. Karami, A., Rezaei, E., Shahhosseni, M. & Aghakhani, M. (2012). Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. of Therm. Sci. 53, 141-147. DOI: 10.1016/j.ijthermalsci.2011.10.016.10.1016/j.ijthermalsci.2011.10.016
  21. 21. Rezaei, E., Karami, A.,Yousefi, T. & Mahmoudinezhad, S. (2012).Modeling the free convection heat transfer in a partitioned cavity using ANFIS, Int. Communications in Heatand Mass Transfer. 39(3), 470-475.DOI: 10.1016/j.icheatmasstransfer. 2011.12.006.
  22. 22. Minai, A.A. & Williams R.D. (1990). Acceleration of back propagation through learning rate and momentum adaptation. International joint conference on neural networks; 1, 676-9.
  23. 23. Neural Computing, (1996). A technology handbook for professional II/ PLUS and neural works explorer,. Pittsburgh: Neural Ware Inc, Technical Publications Group.
  24. 24. Haykin, S.(1994). Neural networks: a comprehensive foundation, New York: Macmillan College Publishing Company; ISBN 0-02352761-7.
  25. 25. Hammouda, HB,.Mhiri, M., Gafsi, Z., Besbes, K. (2008). Neural-based models ofsemiconductor devices for HSPICE Simulation. Am. J. Appl.Sci. 5(4), 385-391.DOI: 10.3844/ ajassp.2008.385.391.10.3844/ajassp.2008.385.391
  26. 26. Shirvany, Y., Hayati, M., Moradian, R. (2008).Numerical solution of the nonlinear Schrodinger equationbyfeedforward neural networks.Communications in Nonlinear Science andNumerical Simulation. 13(10), 2132-2145. DOI: 10.1016/j. cnsns.2007.04.024.
  27. 27. Gallant, AR. & White, H. (1992).On learning the derivatives of an unknown mappingwith multilayer feed forward networks. Elsevier Science.5, 129-38.
Language: English
Page range: 46 - 52
Published on: Jan 12, 2013
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Amin Amiri, Alimohammad Karami, Tooraj Yousefi, Mohammad Zanjani, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons License.