Have a personal or library account? Click to login
Magnetic nanoparticles as targeted delivery systems in oncology Cover

Magnetic nanoparticles as targeted delivery systems in oncology

By: Sara Prijic and  Gregor Sersa  
Open Access
|Jan 2011

References

  1. Widder KJ, Senyei AE, Ranney DF. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol Chemother 1979; 16: 213-71.10.1016/S1054-3589(08)60246-X
  2. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9: 102-9.10.1038/sj.gt.330162411857068
  3. Morana G, Salviato E, Guarise A. Contrast agents for hepatic MRI. Cancer Imaging 2007; 7 Spec No A: S24-7.10.1102/1470-7330.2007.9001272796217921081
  4. Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 1994; 19: 253-6.10.1007/BF031889287867668
  5. Filipponi L, Sutherland D, editors. Nanotechnology: a brief introduction [Internet]. Aarhus: University of Aarhus; 2007 [cited 2010 March 11]. Available from: http://www.nanocap.eu. http://www.nanocap.eu
  6. Hunter R. Electrokinetics and the zeta potential. In: Hunter R, editor. Foundations of colloid science. New York: Oxford University Press; 2001. p. 373-434.
  7. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4: 634-41.10.1038/nnano.2009.24219809453
  8. Gubin S. Introduction. In: Gubin S, editor. Magnetic nanoparticles. Weinheim: Wiley-VCH; 2009. p. 1-24.10.1002/9783527627561
  9. Bondi JF, Oyler KD, Ke X, Schiffer P, Schaak RE. Chemical synthesis of air-stable manganese nanoparticles. J Am Chem Soc 2009; 131: 9144-5.10.1021/ja901372q19566087
  10. Alexiou C, Jurgons R. Magnetic drug targeting. In: Andrä W, Nowak H, editors. Magnetism in medicine: a handbook. Berlin: Wiley-VCH; 2007. p. 596-605.10.1002/9783527610174.ch4h
  11. Lowery T. Nanomaterials-based magnetic sensors switch biosensors. In: Kumar C, editor. Nanomaterials for the life sciences. Weinheim: Wiley-VCH; 2009. p. 3-54.
  12. Wilhelm C, Cebers A, Bacri JC, Gazeau F. Deformation of intracellular endosomes under a magnetic field. Eur Biophys J 2003; 32: 655-60.10.1007/s00249-003-0312-012811432
  13. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A 1992; 89: 7683-7.10.1073/pnas.89.16.7683497751502184
  14. Schultheiss-Grassi PP, Wessiken R, Dobson J. TEM investigations of biogenic magnetite extracted from the human hippocampus. Biochim Biophys Acta 1999; 1426: 212-6.10.1016/S0304-4165(98)00160-3
  15. Soenen SJ, De Cuyper M. Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 2009; 4: 207-19.10.1002/cmmi.28219810053
  16. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995-4021.10.1016/j.biomaterials.2004.10.01215626447
  17. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 2007; 41: 284-90.10.1021/es061349a17265960
  18. Prijic S, Scancar J, Romih R, Cemazar M, Bregar VB, Znidarsic A, et al. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J Membr Biol 2010; 236: 167-79.10.1007/s00232-010-9271-4291426320602230
  19. Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 2010; 31: 6317-24.10.1016/j.biomaterials.2010.04.043289606020494439
  20. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387-92.
  21. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60: 1615-26.10.1016/j.addr.2008.08.00518840489
  22. Leuschner C, Kumar CS, Hansel W, Soboyejo W, Zhou J, Hormes J. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99: 163-76.10.1007/s10549-006-9199-716752077
  23. Babincova M, Babinec P. Magnetic drug delivery and targeting: principles and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153: 243-50.10.5507/bp.2009.04220208962
  24. Mosso JA, Rand RW. Ferromagnetic silicone vascular occlusion: a technic for selective infarction of tumors and organs. Ann Surg 1973; 178: 663-8.10.1097/00000658-197311000-0002113557524748306
  25. Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 1996; 56: 4694-701.
  26. Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 2010; 6: 64-9.10.1016/j.nano.2009.04.002331930619446653
  27. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996; 13: 245-55.10.3109/026520496090260138860681
  28. Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C. Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 2009; 487: 111-46.10.1007/978-1-60327-547-7_619301645
  29. Luo D, Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 2000; 18: 893-5.10.1038/7852310932162
  30. Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 2003; 384: 737-47.10.1515/BC.2003.08212817470
  31. Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U, et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 2004; 6: 923-36.10.1002/jgm.57715293351
  32. Plank C, Scherer F, Schillinger U, Bergemann C, Anton M. Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J Liposome Res 2003; 13: 29-32.10.1081/LPR-12001748612725725
  33. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 2005; 102: 9469-74.10.1073/pnas.0503879102117226615972807
  34. Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 2006; 7: 321-6.10.4142/jvs.2006.7.4.321324213817106221
  35. Ma YJ, Gu HC. Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro. J Mater Sci Mater Med 2007; 18: 2145-9.10.1007/s10856-007-3015-817665123
  36. Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005; 26: 2685-94.10.1016/j.biomaterials.2004.07.023
  37. Prabha S, Zhou WZ, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 2002; 244: 105-15.10.1016/S0378-5173(02)00315-0
  38. Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001; 71: 39-51.10.1016/S0168-3659(00)00358-8
  39. Jordan A, Scholz R, Wust P, Schirra K, Schiestel T, Schmidt H, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 1999; 194: 185-96.10.1016/S0304-8853(98)00558-7
  40. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24: 1001-11.10.1016/S0142-9612(02)00440-4
  41. Sincai M, Ganga D, Ganga M, Argherie D, Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. J Magn Magn Mater 2005; 293: 438-41.10.1016/j.jmmm.2005.02.074
  42. Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2007; 2: 2391-411.10.1038/nprot.2007.35217947981
  43. Wei W, Xu C, Wu H. Use of PEI-coated magnetic iron oxide nanoparticles as gene vectors. J Huazhong Univ Sci Technolog Med Sci 2004; 24: 618-20.10.1007/BF0291137315791859
  44. Chen CB, Chen JY, Lee WC. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J Nanosci Nanotechnol 2009; 9: 2651-9.10.1166/jnn.2009.44919438016
  45. Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A 1999; 96: 5177-81.10.1073/pnas.96.9.51772183710220439
  46. Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 2002; 4: E12.10.1208/ps040312
  47. Smith CA, de la Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 2010; 31: 4392-400.10.1016/j.biomaterials.2010.01.096
  48. Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, et al. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 2010; 31: 769-78.10.1016/j.biomaterials.2009.09.085
  49. Murata M, Takahashi S, Kagiwada S, Suzuki A, Ohnishi S. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides. Biochemistry 1992; 31: 1986-92.10.1021/bi00122a013
  50. Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug Chem 1992; 3: 533-9.10.1021/bc00018a012
  51. Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179-88.10.1016/0092-8674(88)90262-0
  52. Frankel AD, Bredt DS, Pabo CO. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 1988; 240: 70-3.10.1126/science.28329442832944
  53. Xylourgidis N, Fornerod M. Acting out of character: regulatory roles of nuclear pore complex proteins. Dev Cell 2009; 17: 617-25.10.1016/j.devcel.2009.10.01519922867
  54. Xu C, Xie J, Kohler N, Walsh EG, Chin YE, Sun S. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting. Chem Asian J 2008; 3: 548-52.10.1002/asia.200700301269242518080259
  55. Müller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4: 161-70.10.3109/106118696090159738959488
  56. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995; 17: 31-48.10.1016/0169-409X(95)00039-A
  57. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008; 5: 316-27.10.1021/mp7001285
  58. Mykhaylyk O, Cherchenko A, Ilkin A, Dudchenko N, Ruditsa V, Novoseletz M, et al. Glial brain tumor targeting of magnetite nanoparticles in rats. J Magn Magn Mater 2001; 225: 241-47.10.1016/S0304-8853(00)01264-6
  59. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006; 89: 338-47.10.1093/toxsci/kfj027
  60. Lacava ZGM, Azevedo RB, Lacava LM, Martins EV, Garcia VAP, Rébula CA, et al. Toxic effects of ionic magnetic fluids in mice. J Magn Magn Mater 1999; 194: 90-95.10.1016/S0304-8853(98)00583-6
  61. Lacava LM, Garcia VAP, Kückelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 2004; 272-276: 2434-35.10.1016/j.jmmm.2003.12.852
  62. Olden K, editor. Health effects from exposure to power-line frequency electric and magnetic fields [Internet]. Research triangle park (NC): National institute of environmental health sciences (US); 1999 [cited 2010 April 15]. Available from: http://www.niehs.nih.gov/health/docs/niehs-report.pdf
  63. Leszczynski D. Rapporteur report: cellular, animal and epidemiological studies of the effects of static magnetic fields relevant to human health. Prog Biophys Mol Biol 2005; 87: 247-53.10.1016/j.pbiomolbio.2004.08.014
  64. Saunders R. Static magnetic fields: animal studies. Prog Biophys Mol Biol 2005; 87: 225-39.10.1016/j.pbiomolbio.2004.09.001
  65. Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochim Biophys Acta 1992; 1136: 231-8.10.1016/0167-4889(92)90111-N
  66. Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 2002; 224: 817-22.10.1148/radiol.224301130012202720
  67. Coletti D, Teodori L, Albertini MC, Rocchi M, Pristerà A, Fini M, et al. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Citometry Part A 2007; 71A: 846-56.10.1002/cyto.a.20447
  68. Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res 2002; 17: 1814-21.10.1359/jbmr.2002.17.10.1814
  69. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60: 1252-65.10.1016/j.addr.2008.03.018
  70. Saini S, Stark DD, Hahn PF, Wittenberg J, Brady TJ, Ferrucci JT. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 1987; 162: 211-6.10.1148/radiology.162.1.3786765
  71. Saini S, Stark DD, Hahn PF, Bousquet JC, Introcasso J, Wittenberg J, et al. Ferrite particles: a superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. Radiology 1987; 162: 217-22.10.1148/radiology.162.1.3786766
  72. Weissleder R, Stark DD. Magnetic resonance imaging of liver tumors. Semin Ultrasound CT MR 1989; 10: 63-77.
  73. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175: 489-93.10.1148/radiology.175.2.2326474
  74. Chertok B, David AE, Moffat BA, Yang VC. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking. Biomaterials 2009; 30: 6780-7.10.1016/j.biomaterials.2009.08.040
  75. Chertok B, David AE, Huang Y, Yang VC. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 2007; 122: 315-23.10.1016/j.jconrel.2007.05.030
  76. ClinicalTrials.gov [Internet]. Bethesda (MD): National Institutes of Health (US); 1993 - . Pre-operative staging of pancreatic cancer using superparamagnetic iron oxide magnetic resonance imaging (SPIO MRI) [cited 2010 September 12].; [about 3 p.]. Available from: http://clinicaltrials.gov/ct2/show/NCT00920023
  77. Jain R, Dandekar P, Patravale V. Diagnostic nanocarriers for sentinel lymph node imaging. J Control Release 2009; 138: 90-102.10.1016/j.jconrel.2009.05.010
  78. Zhu L, Loo WT, Chow LW. Circulating tumor cells in patients with breast cancer: possible predictor of micro-metastasis in bone marrow but not in sentinel lymph nodes. Biomed Pharmacother 2005; 59: S355-8.10.1016/S0753-3322(05)80077-0
  79. Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G. Isolation and culture of colon cancer stem cells. Methods Cell Biol 2008; 86: 311-24.10.1016/S0091-679X(08)00014-9
  80. Joo KM, Nam DH. Prospective identification of cancer stem cells with the surface antigen CD133. Methods Mol Biol 2009; 568: 57-71.10.1007/978-1-59745-280-9_5
  81. Wang GY, Li Y, Yu YM, Yu B, Zhang ZY, Liu Y, et al. Detection of disseminated tumor cells in bone marrow of gastric cancer using magnetic activated cell sorting and fluorescent activated cell sorting. J Gastroenterol Hepatol 2009; 24: 299-306.10.1111/j.1440-1746.2008.05633.x
  82. Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 1995; 61: 272-9.10.1002/ijc.2910610222
  83. Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 2005; 21: 637-47.10.1080/02656730500158360
  84. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 2007; 81: 53-60.10.1007/s11060-006-9195-0
  85. FDA-Approved Drugs [Internet]. Boston (MA): CenterWatch. 1995 - . FDA Approved Drugs for Oncology [cited 2010 September 14]; [about 7 p.]. Available from: http://www.centerwatch.com/drug-information/fda-approvals/drug-areas.aspx?AreaID=12
  86. Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 1983; 19: 135-9.10.1016/0277-5379(83)90408-X
  87. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996; 56: 4686-93.
  88. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000; 60: 6641-8.
  89. Goodwin SC, Bittner CA, Peterson CL, Wong G. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci 2001; 60: 177-83.10.1093/toxsci/60.1.177
  90. Koda J, Venook A, Walser E. A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur J Cancer 2002; 38: S18.10.1016/S0959-8049(02)80690-6
  91. Wilson MW, Kerlan RK, Fidelman NA, Venook AP, LaBerge JM, Koda J, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite-initial experience with four patients. Radiology 2004; 230: 287-93.10.1148/radiol.230102149314695402
  92. ClinicalTrials.gov [Internet]. Bethesda (MD): National Institutes of Health (US); 1993 - . Safety and efficacy of doxorubicin adsorbed to magnetic beads Vs. IV doxorubicin in treating liver cancer [cited 2010 May 5]; [about 2 p.]. Available from: http://clinicaltrials.gov/ct/show/NCT00034333
  93. Kamensek U, Sersa G. Targeted gene therapy in radiotherapy. Radiol Oncol 2008; 42: 115-35.10.2478/v10019-008-0009-1
  94. Cemazar M, Jarm T, Sersa G. Cancer electrogene therapy with interleukin-12. Curr Gene Ther 2010; 10: 300-11.10.2174/156652310791823425
  95. Krötz F, Sohn HY, Gloe T, Plank C, Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res 2003; 40: 425-34.10.1159/000073901
  96. Krötz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, et al. Magnetofection-a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7: 700-10.10.1016/S1525-0016(03)00065-0
  97. Jahnke A, Hirschberger J, Fischer C, Brill T, Köstlin R, Plank C, et al. Intratumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study. J Vet Med A 2007; 54: 599-606.10.1111/j.1439-0442.2007.01002.x
  98. Hüttinger C, Hirschberger J, Jahnke A, Köstlin R, Brill T, Plank C, et al. Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J Gene Med 2008; 10: 655-67.10.1002/jgm.1185
  99. Lu Y, Madu CO. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv 2010; 7: 19-35.10.1517/17425240903419608
  100. Russ V, Wagner E. Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm Res 2007; 24: 1047-57.10.1007/s11095-006-9233-9
  101. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465-8.10.1126/science.1690918
  102. Ardehali A, Fyfe A, Laks H, Drinkwater DC, Qiao JH, Lusis AJ. Direct gene transfer into donor hearts at the time of harvest. J Thorac Cardiovasc Surg 1995; 109: 716-20.10.1016/S0022-5223(95)70353-5
  103. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol 2000; 35: 1323-30.10.1016/S0735-1097(00)00522-2
  104. Mueller C, Graessmann A, Graessmann M. Mapping of early SV40-specific functions by microinjection of different early viral DNA fragments. Cell 1978; 15: 579-85.10.1016/0092-8674(78)90026-0
  105. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841-5.10.1002/j.1460-2075.1982.tb01257.x
  106. Sanford JC, Klein TM, Wolf ED, Allen N. Delivery of substances into cells and tissues using a particle bombardment process. Particul Sci Technol 1987; 5: 27-37.10.1080/02726358708904533
  107. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23: 953-9.10.1016/S0301-5629(97)00025-2
  108. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6: 1258-66.10.1038/sj.gt.330094710455434
  109. McKnight T, Melechko A, Griffin G, Guillorn MA, Merkulov VI, Serna F, et al. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 2003; 14: 551-6.10.1088/0957-4484/14/5/313
  110. Ohlfest JR, Freese AB, Largaespada DA. Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies. Curr Gene Ther 2005; 5: 629-41.10.2174/15665230577496474916457652
  111. Morishita N, Nakagami H, Morishita R, Takeda S, Mishima F, Terazono B, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334: 1121-6.10.1016/j.bbrc.2005.06.20416134237
  112. Mah C, Zolotukhin I, Fraites T, Dobson J, Batich C, Byrne B. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Ther 2000; 1: 239S.
  113. Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 2006; 13: 1545-52.10.1038/sj.gt.330280316738690
  114. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995; 92: 7297-301.10.1073/pnas.92.16.7297
  115. Pan X, Guan J, Yoo JW, Epstein AJ, Lee LJ, Lee RJ. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int J Pharm 2008; 358: 263-70.10.1016/j.ijpharm.2008.02.020
  116. Xiang JJ, Nie XM, Tang JQ, Wang YJ, Li Z, Gan K, et al. In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency. Zhonghua Zhong Liu Za Zhi 2004; 26: 71-4.
  117. Yang SY, Sun JS, Liu CH, Tsuang YH, Chen LT, Hong CY, et al. Ex vivo magnetofection with magnetic nanoparticles: a novel platform for nonviral tissue engineering. Artif Organs 2008; 32: 195-204.10.1111/j.1525-1594.2007.00526.x
  118. Ino K, Kawasumi T, Ito A, Honda H. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet. Biotechnol Bioeng 2008; 100: 168-76.10.1002/bit.21738
  119. Kamau Chapman SW, Hassa PO, Koch-Schneidemann S, von Rechenberg B, Hofmann-Amtenbrink M, Steitz B, et al. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins. J Magn Magn Mater 2008; 320: 1517-27.10.1016/j.jmmm.2008.01.002
  120. Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J 2007; 21: 2510-9.10.1096/fj.06-8070com
  121. Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 2006; 34: e40.10.1093/nar/gkl035
  122. McBain S, Griesenbach U, Xenariou S, Keramane A, Batich CD, Alton EWFW, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008; 19: 1-5.10.1088/0957-4484/19/40/405102
  123. Maass G, Schweighoffer T, Berger M, Schmidt W, Herbst E, Zatloukal K, et al. Tumor vaccines: effects and fate of IL-2 transfected murine melanoma cells in vivo. Int J Immunopharmacol 1995; 17: 65-73.10.1016/0192-0561(94)00085-3
  124. Schmidt W, Schweighoffer T, Herbst E, Maass G, Berger M, Schilcher F, et al. Cancer vaccines: the interleukin 2 dosage effect. Proc Natl Acad Sci U S A 1995; 92: 4711-4.10.1073/pnas.92.10.4711420147753870
  125. Kircheis R, Küpcü Z, Wallner G, Wagner E. Cytokine gene-modified tumor cells for prophylactic and therapeutic vaccination: IL-2, IFN-gamma, or combination IL-2 + IFN-gamma. Cytokines Cell Mol Ther 1998; 4: 95-103.
DOI: https://doi.org/10.2478/v10019-011-0001-z | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 1 - 16
Published on: Jan 19, 2011
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Sara Prijic, Gregor Sersa, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons License.

Volume 45 (2011): Issue 1 (March 2011)