Have a personal or library account? Click to login
Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7 Cover

Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

Open Access
|Apr 2010

References

  1. World Health Organization (WHO). Electromagnetic fields and public health: mobile telephones and their base stations, displayed 22 February 2010. Available at http://www.who.int/mediacentre/factsheets/fs193/en
  2. Grundler W, Keiser F, Keilmann F, Walleczek J. Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 1992; 79: 551-9.10.1007/BF01131411
  3. Pacini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Gulisano M. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res 2002; 13: 19-24.10.3727/096504002108747926
  4. Zeni O, Romano M, Perrotta A, Lioi MB, Barbieri R, d'Ambrosio G, et al. Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vitro exposure to 900 MHz radiofrequency fields. Bioelectromagnetics 2005; 26: 258-65.10.1002/bem.20078
  5. Botstein D, Fink GR. Yeast: an experimental organism for modern biology. Science 1988; 240: 1439-43.10.1126/science.3287619
  6. Gos P, Eicher B, Kohli J, Heyer WD. Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics 1997; 18: 142-55.10.1002/(SICI)1521-186X(1997)18:2<;142::AID-BEM7>3.0.CO;2-2
  7. Štafa A, Svetec I-K, Zgaga Z. Inactivation of the SGS1 and EXO1 genes synergistically stimulates plasmid integration in yeast. Food Technol Biotechnol 2005; 43: 103-8.
  8. Zimmermann FK, Kern R, Rasenberger H. A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation. Mutat Res 1975; 28: 381-8.10.1016/0027-5107(75)90232-8
  9. Steffensen KV, Raskmark P, Penersen GF. FTDT calculations of the EM-field distribution in a microtiter suspension well. In: Chiabrern A, Juutilainen J, editors. Proceedings of the COST 244 Workshop: Biomedical Effects of Electromagnetic Fields; 3-4 Sep 1995; Kuopio, Finland, p. 80-7.
  10. Malyapa RS, Ahern EW, Straube WL, Moros EG, Pickard WF, Roti Roti JL. Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74). Radiat Res 1997; 148: 618-27.10.2307/3579738
  11. Zeni O, Chiavoni AS, Sannino A, Antolini A, Forgio D, Bersani F. Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields. Radiat Res 2003; 160: 152-8.10.1667/RR3014
  12. Gurisik E, Warton K, Martin DK, Valenzuela SM. An in vitro study of the effects of exposure to a GSM signal in two human cell lines: monocytic U937 and neuroblastoma SK-N-SH. Cell Biol Int 2006; 30: 793-9.10.1016/j.cellbi.2006.06.001
  13. Miklos M, Gajski G, Garaj-Vrhovac V. Usage of the standard and modified comet assay in assessment of DNA damage in human lymphocytes after exposure to ionizing radiation. Radiol Oncol 2009; 43: 97-107.10.2478/v10019-009-0015-y
  14. Phillips JL, Ivaschuk O, Ishida-Jones T, Jones RA, Campbell-Beachler M, Haggren W. DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular radiofrequency field in vitro. Bioelectrochem Bioenerg 1998; 45: 103-10.10.1016/S0302-4598(98)00074-9
  15. Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 2005; 583: 178-83.10.1016/j.mrgentox.2005.03.006
  16. Grundler W, Keilmann F. Nonthermal effects of millimeter microwaves on yeast growth. Z Naturforsch C Biosci 1978; 33: 15-22.10.1515/znc-1978-1-205
  17. Grundler W. Intensity- and frequency-dependent effects of microwaves on cell growth rates. Bioelectrochem Bioenerg 1992; 27: 361-5.10.1016/0302-4598(92)87010-R
  18. Grundler W, Kaiser F. Experimental evidence for cohorent excitations correlated with cell growth. Nanobiology 1992; 1: 163-76.
  19. Bardwell AJ, Bardwell L, Tomkinson AE, Friedberg EC. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 1994; 265: 2082-5.10.1126/science.8091230
  20. Paques F, Haber JE. Multiple pathways of recombination induced by doublestrand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63: 349-404.10.1128/MMBR.63.2.349-404.1999
  21. Gos P, Eicher B, Kohli J, Heyer WD. No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 2000; 21: 515-23.10.1002/1521-186X(200010)21:7<;515::AID-BEM5>3.0.CO;2-K
DOI: https://doi.org/10.2478/v10019-010-0019-7 | Journal eISSN: 1581-3207 | Journal ISSN: 1318-2099
Language: English
Page range: 131 - 134
Published on: Apr 23, 2010
Published by: Association of Radiology and Oncology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Ivana Vrhovac, Reno Hrascan, Jasna Franekic, published by Association of Radiology and Oncology
This work is licensed under the Creative Commons License.

Volume 44 (2010): Issue 2 (June 2010)