Have a personal or library account? Click to login
ANN based evaluation of the NOx concentration in the exhaust gas of a marine two-stroke diesel engine Cover

ANN based evaluation of the NOx concentration in the exhaust gas of a marine two-stroke diesel engine

By: Jerzy Kowalski  
Open Access
|Jul 2009

References

  1. Interim Guidelines for the Application of the NOx Technical Code, IMO News, No. 1. 2000
  2. Kyrtatos N.P., Dimopoulos G.G., Theotokatos G.P., Tzanos E.I., Xiros N.I., NOx-box: A software sensor for real-time exhaust emissions estimation in marine engine, Proceedings of IMAM 2002, Athens 2002
  3. Heywood J.B., Sher E., The Two-Stroke Cycle Engine. Its Development, Operation, and Design, Taylor&Francis N.Y. 1999
  4. Kowalski J., Tarełko W.: NOx emission from a two-stroke ship engine. Part 1: Modeling aspect. Applied Thermal Engineering. Vol. 29 No 11-12, Elsevier 200910.1016/j.applthermaleng.2008.06.032
  5. Kowalski J., Tarełko W.: NOx emission from a two-stroke ship engine: Part 2 - Laboratory test. Applied Thermal Engineering. Vol. 29 No 11-12, Elsevier 200910.1016/j.applthermaleng.2008.06.031
  6. Konnov A.A., Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons, 28-th Symposium (Int.) on Combustion. Abstr. Symp. Pap., Edinburgh 2000
  7. Werbos P., Beyond regression: New tools for prediction and analysis in the behavioural sciences, Ph.D. Thesis, Harvard University 1974
  8. Wang W., Chirwa E.C., Zhou E., Holmes K., Nwagboso C., Fuzzy neural ignition timing control for a natural gas fuelled spark ignition engine, Proc. Instn. Mech. Engrs. Vol. 215 Part D, IMechE 200110.1243/0954407011528833
  9. Oladsine M., Bloch G., Dovifaaz X., Neural modelling and control of a diesel engine with pollution constrains, J. Intel. Robotic Systems, Vol. 41. Kluwer Academic Publishers, 200410.1007/s10846-005-3806-y
  10. Hafner M., Schuler M., Nelles O., Isermann R., Fast neural networks for diesel engine control design, Control Engineering Practice, Vol. 8, Pergamon 200010.1016/S0967-0661(00)00057-5
  11. Stephan V., Debes K., Gross H-M., Wintrich F. Wintrich H., A new control scheme for combustion processes using reinforcement learning based on neural networks, Int. J. Comput. Intel. Appl. Vol. 1. No 2, Imperial College Press, 200110.1142/S1469026801000172
  12. Yang H., Ring Z., Briker Y., McLean N., Friesen W., Fairbridge C., Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC-MS, Fuel Vol. 81. Elsevier, 200210.1016/S0016-2361(01)00121-1
  13. Ramadhas A.S., Jayaraj S., Muraleedharan C., Padmakumari K., Artificial neural networks used for the prediction of the cetane number of biodiesel, Renewable Energy Vol. 31. Elsevier, 200610.1016/j.renene.2006.01.009
  14. Lee S.H., Howlett R.J., Crua C., Walters S.D., Fuzzy logic and neuro-fuzzy modelling of diesel spray penetration: A comparative study, J. Intel. Fuz. Sys. Vol. 18, IOS Press, 2007
  15. Blasco J.A., Fueyo N., Dopazo C., Ballester J., Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network, Combustion and Flame, Vol 113, Elsevier, 199810.1016/S0010-2180(97)00211-3
  16. Thompson G.J., Atkinson C.M., Clark N.N., Long T.W., Hanzevack E., Neutal network modelling of the emissions and performance of heavy-duty diesel engine, Proc. Instn. Mech. Engrs. Vol. 214 Part D, IMechE, 200010.1243/0954407001527277
  17. Cerri G., Michelassi V., Monacchia S., Pica S., Kinetic combustion neural modelling integrated into computational fluid dynamics, Proc. Inst. Mech. Engrs. Vol. 217 Part A, IMechE, 200310.1243/09576500360611218
  18. Shenvi N., Geremia J.M., Rabitz H., Efficient chemical kinetic modelling through neural network maps, Journal of Chemical Physics Vol. 120, No 21. American Institute of Physics, 200410.1063/1.171830515268013
  19. Galindo J., Luja‵n J.M., Serrano J.R., Hernandez L., Combustion simulation of turbocharger HSDI Diesel engines during transient operation using neural networks, Applied Thermal Engineering Vol. 25, Elsevier, 200510.1016/j.applthermaleng.2004.08.004
  20. Sen B.A., Menon S., Turbulent premixed flame modeling using artificial neural networks based chemical kinetics, Proceedings of the Combustion Institute Vol. 32, Elsevier, 200910.1016/j.proci.2008.05.077
  21. Kesgin U., Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission, Fuel Vol. 83, Elsevier, 200410.1016/j.fuel.2003.10.025
  22. Sayin C., Ertunc H.M., Hosoz M., Kilicaslan I., Canakci M., Performance and exhaust emissions of a gasoline engine using artificial neural network, Applied Thermal Engineering Vol. 27, Elsevier, 200710.1016/j.applthermaleng.2006.05.016
  23. Al-Hinti I., Samhouri M., Al-Ghandoor A., Sakhrieh A., The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach, Applied Energy Vol. 86, Elsevier, 200910.1016/j.apenergy.2008.04.015
  24. Parlak A., Islamoglu Y., Yasar H., Egrisogut A., Application of artificial neural network to predict fuel consumption and temperature for a diesel engine, Applied Thermal Engineering Vol. 26, Elsevier, 2006.10.1016/j.applthermaleng.2005.10.006
  25. Wang S., D.L. Yu., Adaptive RBF network for parameter estimation and stable air-fuel ratio control, Neural Networks Vol. 21. Elsevier, 200810.1016/j.neunet.2007.10.00618166378
  26. Ghobadian B., Rahimi H., Nikbakht A.M., Najafi G., Yusaf T.F., Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network, Renewable Energy Vol. 34, Elsevier, 200910.1016/j.renene.2008.08.008
  27. Atashkari K., Nariman-Zadeh N., Gölcü M., Khalkhali A., Jamali A., Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms, Energy Conversion and Management, Vol. 48, Elsevier, 200710.1016/j.enconman.2006.07.007
  28. Najafi G., Ghobadian B., Tavakoli T., Buttsworth D.R., Yusaf T.F., Faizollahnejad M., Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network, Applied Energy Vol. 86, Elsevier, 200910.1016/j.apenergy.2008.09.017
  29. Wu J-D., Liu C-H., An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network, Expert Systems with Applications Vol. 36, Elsevier, 200910.1016/j.eswa.2008.03.008
  30. Heywood J.B., Internal Combustion Engine Fundamentals, McGraw-Hill 1988
  31. Bebara L., Kermesa V., Stehlika P., Canekb J., Oralc J., Low NOx burners—prediction of emissions concentration based on design, measurements and modeling, Waste Management No. 22/2002, Elsevier Science Inc. 200210.1016/S0956-053X(02)00028-4
  32. Reynolds J.P., Jeris J., Theodore L., Handbook of chemical and environmental engineering calculations, Willey-Interscience, New Jersey 2007
  33. Egolfopoulos F.N., Validation of nitrogen kinetics in high pressure fames, Energy Conversion & Management No. 42/2001, Elsevier Science Inc. 200110.1016/S0196-8904(00)00048-0
  34. Lyle K.H., Tseng K.L., Gore J.P., Laurendeau N.M., A study of pollutant emission characteristics of partially premixed turbulent jet flames, Combustion and Flame No. 116/1999, Elsevier Science Inc. 199910.1016/S0010-2180(98)00068-6
  35. Kuo K.K., Principles of combustion, Wiley. New Jersey 2005
  36. Kowalski J., Tarelko W., Nitric Oxides emission estimation based on measuring of work parameters of ship two-stroke engine, Proceedings of 2nd International Conference on Marine Research and Transportation. Ischia Naples Italy. 2007. Session C
  37. Barlow R.S., Karpetis A.N., Frank J.H., Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames, Combustion and Flame No. 127/2001, Elsevier Science Inc. 200110.1016/S0010-2180(01)00313-3
  38. Bowman C. T, Hanson R.K., Gardiner W.C., Lissianski V., Frenklach M., Goldenberg M., Smith G.P., Crosley D.R., Golden D.M., GRI-Mech 2.11 An optimized detailed chemical reaction mechanism for methane combustion and NO formation and re-burning, Topical Report Gas Research Institute 6/94 - 2/96
  39. Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K., A comprehensive modeling study of n-heptane oxidation, Combustion and Flame No. 114/1998, Elsevier Science Inc. 199810.1016/S0010-2180(97)00282-4
  40. Masters T., Practical neural network recipes in C++, Academic Press Inc., 199310.1016/B978-0-08-051433-8.50017-3
  41. Marine Engine IMO Tier II Programme 2009, MAN Netherland 2009
  42. Kowalski J., The NOx emission estimation by artificial neural network: the results, Journal of KONES, Vol. 15, Warsaw 2008
  43. Kowalski J., The NOx emission estimation by artificial neural network: the analyze, Journal of KONES, Vol. 15, Warsaw 2008
  44. Ghobadian B., Rahimi H., Nikbakht A.M., Najafi G, Yusaf T.F., Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network, Renewable Energy Vol. 34, Elsevier Science Inc. 200910.1016/j.renene.2008.08.008
  45. Svozil D., Kvasnicka V., Pospichal J., Introduction to multilayer feed-forward neural networks, Chemometrics and intelligent laboratory systems Vol. 39, Elsevier 199710.1016/S0169-7439(97)00061-0
DOI: https://doi.org/10.2478/v10012-008-0023-7 | Journal eISSN: 2083-7429 | Journal ISSN: 1233-2585
Language: English
Page range: 60 - 66
Published on: Jul 30, 2009
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Jerzy Kowalski, published by Gdansk University of Technology
This work is licensed under the Creative Commons License.

Volume 16 (2009): Issue 2 (April 2009)