Have a personal or library account? Click to login
Quantitative structure-pharmacokinetic relationship (QSPkP) analysis of the volume of distribution values of anti-infective agents from j group of the ATC classification in humans Cover

Quantitative structure-pharmacokinetic relationship (QSPkP) analysis of the volume of distribution values of anti-infective agents from j group of the ATC classification in humans

By: Bruno Louis and  Vijay K. Agrawal  
Open Access
|Nov 2012

References

  1. 1. T. Kennedy, Managing the drug discovery and development interface, Drug Discov. Today 2 (1997) 436-444; DOI: 10.1016/S1359-6446(97)01099-4.10.1016/S1359-6446(97)01099-4
  2. 2. M. Brvar, A. Perdih, V. Hodnik, M. Renko, G. Anderluh, R. Jerala and T. Solmajer, In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B, Bioorg. Med. Chem. 20 (2012) 2572-2580; DOI: 10.1016/j.bmc.2012.02.052.10.1016/j.bmc.2012.02.05222444877
  3. 3. N. G. Chee, Y. Xiao, W. Putnam, B. Lum and A. Tropsha, Quantitative structure-pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial agents in humans using simulated annealing k-nearest-neighbor and partial least-square analysis methods, J. Pharm. Sci. 93 (2004) 2535-2544; DOI: 10.1002/jps.20117.10.1002/jps.2011715349962
  4. 4. J. V. Turner, D. J. Maddalena, D. J. Cutler and S. Agatonovic-Kustrin, Multiple pharmacokinetic parameter prediction for a series of cephalosporins, J. Pharm. Sci. 92 (2003) 552-559; DOI: 10.1002/jps.10314.10.1002/jps.1031412587116
  5. 5. R. S. Obach, F. Lombardo and N. J. Waters, Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 compounds, Drug Metab. Dispos. 36 (2008) 1385-1405; DOI: 10.1124/dmd.108.020479.10.1124/dmd.108.02047918426954
  6. 6. World Health Organization Collaborating Centre for Drug Statistics Methodology, Guidelines for ATC classification and DDD assignment 2010, 13th ed., WHO Collaborating Centre for Drug Statistics Methodology, Oslo 2009, pp. 163-177.
  7. 7. A. Tropsha, P. Gramatica and V. K. Gombar, The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003) 69-77; DOI: 10.1002/qsar.200390007.10.1002/qsar.200390007
  8. 8. National Center for Biotechnology Information, PubChem Compound Database; http://pubchem.ncbi.nlm.nih.gov/access January 20, 2011.
  9. 9. I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk and V. V. J. Prokopenko, Virtual computational chemistry laboratory - design and description, Comput. Aid. Mol. Des. 19 (2005) 453-463; DOI: 10.1007/s10822-005-8694-y.10.1007/s10822-005-8694-y16231203
  10. 10. M. A. Hall and G. Holmes, Benchmarking attribute selection techniques for discrete class data mining, IEEE Trans. Knowl. Data Eng. 15 (2003) 1437-1447; DOI: 10.1109/TKDE.2003.1245283.10.1109/TKDE.2003.1245283
  11. 11. T. Wajima, K. Fukumura, Y. Yano and T. Oguma, Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis, J. Pharm. Sci. 91 (2002) 2489-2499; DOI: 10.1002/jps.10242.10.1002/jps.1024212434392
  12. 12. P. P. Roy, S. Paul, I. Mitra and K. Roy, On two novel parameters for validation of predictive QSAR models, Molecules 14 (2009) 1660-1701; DOI: 10.3390/molecules 15010604.10.3390/molecules14020738
  13. 13. J. Zupan and J. Gasteiger, Neural Networks in Chemistry and Drug Design, Wiley-VCH, Weinheim 1999, pp. 125-154.
  14. 14. H. Li, Y. Liang and Q. Xu, Support vector machines and its applications in chemistry, Chemometr. Intell. Lab. 95 (2009) 188-198; DOI: 10.1016/j.chemolab.2008.10.007.10.1016/j.chemolab.2008.10.007
  15. 15. S. K. Shevade, S. S. Keerthi, C. Bhattacharyya and K. R. K. Murthy, Improvements to SMO Algorithm for SVM Regression, Technical Report CD-99-16, Control Division, Department of Mechanical and Production Engineering, National University of Singapore, Singapore 1999.
  16. 16. J. Gasteiger, J. Sadowski, J. Schuur, P. Selzer, L. Steinhauer and V. Steinhauer, Chemical information in 3D space, J. Chem. Inf. Comput. Sci. 36 (1996) 1030-1037; DOI: 10.1021/ci960343.10.1021/ci960343+
  17. 17. M. Petitjean, Applications of the radius-diamater diagram to the classification of topological and geometrical shapes of chemical compounds, J. Chem. Inf. Comput. Sci. 32 (1992) 331-337; DOI: 10.1021/ci00008a012.10.1021/ci00008a012
  18. 18. R. S. Obach, J. G. Baxter, T. E. Liston, B. M. Silber, B. C. Jones, F. MacIntyre, D. J. Rance and P. Wastall, The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data, J. Pharmacol Exp. Ther. 283 (1997) 46-58.
DOI: https://doi.org/10.2478/v10007-012-0024-z | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 305 - 323
Published on: Nov 6, 2012
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2012 Bruno Louis, Vijay K. Agrawal, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons License.