Have a personal or library account? Click to login
Metal ions, Alzheimer's disease and chelation therapy Cover

Metal ions, Alzheimer's disease and chelation therapy

By:
Open Access
|Mar 2011

References

  1. D. M. Skovronsky, V. M.-Y. Lee and J. Q. Trojanowski, Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications, Annu. Rev. Pathol. Mech. Dis. 1 (2006) 151-170; DOI: 10.1146/annurev.pathol.1.110304.100113.10.1146/annurev.pathol.1.110304.100113
  2. R. Mayeux, Epidemiology of neurodegeneration, Annu. Rev. Neurosci. 26 (2003) 81-104; DOI: 10.1146/annurev.neuro.26.043002.094919.10.1146/annurev.neuro.26.043002.094919
  3. C. P. Ferri, R. Sousa, E. Albanese, W. S. Ribeiro and M. Honyashiki, World Alzheimer Report 2009 - Executive Summary (Eds. M. Prince and J. Jadeson), Alzheimer's Disease International, London 2009, pp. 1-22; http://www.alz.co.uk/adi/publications.html
  4. F. M. LaFerla and S. Oddo, Alzheimer's disease: Aβ, tau and synaptic dysfunction, Trends Mol. Med. 11 (2005) 170-176; DOI: 10.1016/j.molmed.2005.02.009.10.1016/j.molmed.2005.02.009
  5. M. Tolnay and A. Probst, Tau protein pathology in Alzheimer's disease and related disorders, Neuropathol. Appl. Neurobiol. 25 (1999) 171-187; DOI: 10.1046/j.1365-2990.1999.00182.x.10.1046/j.1365-2990.1999.00182.x
  6. C. Ballatore, V. M.-Y. Lee and J. Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders, Nature Rev. Neurosci. 8 (2007) 663-672; DOI: 10.1038/nrn2194.10.1038/nrn2194
  7. C. W. Scott, A. Fieles, L. A. Sygowski and C. B. Caputo, Aggregation of tau protein by aluminum, Brain Res. 628 (1993) 77-84; DOI: 10.1016/0006-8993(93)90940-O.10.1016/0006-8993(93)90940-O
  8. A. Yamamoto, R.-W. Shin, K. Hasegawa, H. Naiki, H. Sato, F. Yoshimasu and T. Kitamoto, Iron (III) induces aggregation of hyperphosphorylated tau, and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease, J. Neurochem. 86 (2003) 1137-1147; DOI: 10.1046/j.1471-4159.2002.01061.x.10.1046/j.1471-4159.2002.01061.x
  9. R.-W. Shin, T. P. A. Kruck, H. Murayama and T. Kitamoto, A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer's disease, Brain Res. 961 (2003) 139-146; DOI: 10.1016/S0006-8993(02)03893-3.10.1016/S0006-8993(02)03893-3
  10. T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert and R. Riek, 3D structure of Alzheimer's amyloid-β (1-42) fibrils, Proc. Natl Acad. Sci. USA 102 (2005) 17342-17347; DOI: 10.1073/pnas.0506723102.10.1073/pnas.0506723102129766916293696
  11. W. P. Esler and M. S. Wolfe, A portrait of Alzheimer secretases - new features and familiar faces, Science 293 (2001) 1449-1454; DOI: 10.1126/science.1064638.10.1126/science.106463811520976
  12. M. P. Mattson, Pathways towards and away from Alzheimer's disease, Nature 430 (2004) 631-639; DOI: 10.1038/nature02621.10.1038/nature02621309139215295589
  13. M. Shoji, T. Golde, J. Ghiso, T. Cheung, S. Estus, L. Shaffer, X. Cai, D. McKay, R. Tintner and B. Frangione, Production of the Alzheimer amyloid beta protein by normal proteolytic processing, Science 258 (1992) 126-129; DOI: 10.1126/science.1439760.10.1126/science.14397601439760
  14. C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald and K. Beyreuther, Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl Acad. Sci. USA 82 (1985) 4245-4249; DOI: 10.1073/pnas.82.12.4245.10.1073/pnas.82.12.42453979733159021
  15. B. Clippingdale, J. D. Wade and C. J. Barrow, The amyloid-β peptide and its role in Alzheimer's disease, J. Peptide Sci. 7 (2001) 227-249; DOI: 10.1002/psc.324.abs.10.1002/psc.32411428545
  16. C. Vigo-Pelfrey, D. Lee, P. Keim, I. Lieberburg and D. B. Schenk, Amyloid peptide from human cerebrospinal fluid, J. Neurochem. 61 (1993) 1965-1968; DOI: 10.1111/j.1471-4159.1993.tb09841.x.10.1111/j.1471-4159.1993.tb09841.x8229004
  17. P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schiossmacher, J. Whaley, C. Swindlehurst, R. McCormack, R. Wolfert, D. Selkoe, I. Lieberburg and D. Schenk, Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids, Nature 359 (1992) 325-327; DOI: 10.1038/359325a0.10.1038/359325a01406936
  18. J. T. Jarret, E. P. Berger and P. T. Lansbury, The C-terminus of the β protein is critical in amyloidogenesis, Ann. NY Acad. Sci. USA 695 (1993) 144-148; DOI: 10.1111/j.1749-6632.1993.tb23043.x.10.1111/j.1749-6632.1993.tb23043.x8239273
  19. A. Lorenzo and B. A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. USA 91 (1994) 12243-12247; DOI: 10.1073/pnas.91.25.12243.10.1073/pnas.91.25.12243454137991613
  20. J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics, Science 297 (2002) 353-356; DOI: 10.1126/science.1072994.10.1126/science.107299412130773
  21. H. Kozlowski, A. Janicka-Klos, J. Brasun, E. Gaggelli, D. Valensin and G. Valensin, Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation), Coord. Chem. Rev. 253 (2009) 2665-2685; DOI: 10.1016/j.ccr.2009.05.011.10.1016/j.ccr.2009.05.011
  22. Y. Hung, A. Bush and R. Cherny, Copper in the brain and Alzheimer's disease, J. Biol. Inorg. Chem. 15 (2010) 61-76; DOI: 10.1007/s00775-009-0600-y.10.1007/s00775-009-0600-y
  23. P. J. Crouch, K. J. Barnham, A. I. Bush and A. R. White, Therapeutic Treatments for Alzheimer's disease based on metal bioavailability, Drug News Perspect. 19 (2006) 469-474; DOI: 10.1358/dnp.2006.19.8.1021492.10.1358/dnp.2006.19.8.1021492
  24. M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R. Markesbery, Copper, iron and zinc in Alzheimer's disease senile plaques, J. Neurol. Sci. 158 (1998) 47-52; DOI: 10.1016/S0022-510X(98)00092-6.10.1016/S0022-510X(98)00092-6
  25. C. S. Atwood, R. D. Moir, X. Huang, R. C. Scarpa, N. M. E. Bacarra, D. M. Romano, M. A. Hartshorn, R. E. Tanzi and A. I. Bush, Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis, J. Biol. Chem. 273 (1998) 12817-12826; DOI: 10.1074/jbc.273.21.12817.10.1074/jbc.273.21.12817
  26. B. Raman, T. Ban, K.-I. Yamaguchi, M. Sakai, T. Kawai, H. Naiki and Y. Goto, Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid β peptide, J. Biol. Chem. 280 (2005) 16157-16162; DOI: 10.1074/jbc.M500309200.10.1074/jbc.M500309200
  27. P. Faller, Copper and zinc binding to amyloid-β: Coordination, dynamics, aggregation, reactivity and metal-ion transfer, ChemBioChem 10 (2009) 2837-2845; DOI: 10.1002/cbic.200900321.10.1002/cbic.200900321
  28. C. Hureau and P. Faller, A[beta]-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease, Biochimie 91 (2009) 1212-1217; DOI: 10.1016/j.biochi.2009.03.013.10.1016/j.biochi.2009.03.013
  29. M. A. Deibel, W. D. Ehmann and W. R. Markesbery, Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress, J. Neurol. Sci. 143 (1996) 137-142; DOI: 10.1016/S0022-510X(96)00203-1.10.1016/S0022-510X(96)00203-1
  30. M. C. Boll, M. Alcaraz-Zubeldia, S. Montes and C. Rios, Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases, Neurochem. Res. 33 (2008) 1717-1723; DOI: 10.1007/s11064-008-9610-3.10.1007/s11064-008-9610-318307039
  31. I. Maurer, S. Zierz and H. J. Moller, A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients, Neurobiol. Aging 21 (2000) 455-462; DOI: 10.1016/S0197-4580(00) 00112-3.
  32. Q. Ma, Y. Li, J. Du, H. Liu, K. Kanazawa, T. Nemoto, H. Nakanishi and Y. Zhao, Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS, Peptides 27 (2006) 841-849; DOI: 10.1016/j.peptides.2005.09.002.10.1016/j.peptides.2005.09.00216225961
  33. N. T. Watt, I. J. Whitehouse and N. M. Hooper, The role of zinc in Alzheimer's disease, Int. J. Alzheimer's Dis. 2011 (2011) in press; DOI: 10.4061/2011/971021.10.4061/2011/971021
  34. A. Bush, W. Pettingell, G. Multhaup, M. D. Paradis, J. Vonsattel, J. Gusella, K. Beyreuther, C. Masters and R. Tanzi, Rapid induction of Alzheimer A beta amyloid formation by zinc, Science 265 (1994) 1464-1467; DOI: 10.1126/science.8073293.10.1126/science.8073293
  35. K. H. Lim, Y. K. Kim and Y.-T. Chang, Investigations of the molecular mechanism of metal-induced Aβ (1-40) amyloidogenesis, Biochemistry 46 (2007) 13523-13532; DOI: 10.1021/bi701112z.10.1021/bi701112z
  36. C. Talmard, L. Guilloreau, Y. Coppel, H. Mazarguil, and P. Faller, Amyloid-beta peptide forms monomeric complexes with CuII and ZnII prior to aggregation, ChemBioChem 8 (2007) 163-165; DOI: 10.1002/cbic.200600319.10.1002/cbic.200600319
  37. M. P. Cuajungco and K. Y. Faget, Zinc takes the center stage: its paradoxical role in Alzheimer's disease, Brain Res. Rev. 41 (2003) 44-56; DOI: 10.1016/S0165-0173(02)00219-9.10.1016/S0165-0173(02)00219-9
  38. Z.-Y. Mo, Y.-Z. Zhu, H.-L. Zhu, J.-B. Fan, J. Chen and Y. Liang, Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322, J. Biolog. Chem. 284 (2009) 34648-34657; DOI: 10.1074/jbc.M109.058883.10.1074/jbc.M109.058883278732719826005
  39. P. W. Mantyh, J. R. Ghilardi, S. Rogers, E. DeMaster, C. J. Allen, E. R. Stimson and J. E. Maggio, Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide, J. Neurochem. 61 (1993) 1171-1174; DOI: 10.1111/j.1471-4159.1993.tb03639.x.10.1111/j.1471-4159.1993.tb03639.x8360682
  40. C. Opazo, X. Huang, R. A. Cherny, R. D. Moir, A. E. Roher, A. R. White, R. Cappai, C. L. Masters, R. E. Tanzi, N. C. Inestrosa and A. I. Bush, Metalloenzyme-like activity of Alzheimer's disease β-amyloid, J. Biol. Chem. 277 (2002) 40302-40308; DOI: 10.1074/jbc.M206428200.10.1074/jbc.M20642820012192006
  41. D. G. Smith, R. Cappai and K. J. Barnham, The redox chemistry of the Alzheimer's disease amyloid beta peptide, Biochim. Biophysi. Acta - Biomembranes 1768 (2007) 1976-1990; DOI: 10.2217/14796708.2.4.397.10.2217/14796708.2.4.397
  42. P. F. Good, D. P. Perl, L. M. Bierer and J. Schmeidler, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: A laser microprobe (LAMMA) study, Ann. Neurol. 31 (1992) 286-292; DOI: 10.1002/ana.410310310.10.1002/ana.4103103101637136
  43. I. Klatzo, H. Wisniewski and E. Streicher, Experimental production of neurofibrillary degeneration: 1. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24 (1965) 187-199; DOI: 10.1097/00005072-196504000-00002.10.1097/00005072-196504000-0000214280496
  44. R. D. Terry and C. Pena, Experimental production of neurofibrillary degeneration: 2. Electron microscopy, phosphatase histochemistry and electron prose analysis, J. Neuropathol. Exp. Neurol. 24 (1965) 200-210; DOI: 10.1097/00005072-196504000-00003.10.1097/00005072-196504000-0000314280497
  45. D. Drago, M. Bettella, S. Bolognin, L. Cendron, J. Scancar, R. Milacic, F. Ricchelli, A. Casini, L. Messori, G. Tognon and P. Zatta, Potential pathogenic role of β-amyloid1-42-aluminum complex in Alzheimer's disease, Int. J. Biochem. Cell Biol. 40 (2008) 731-746; DOI: 10.1016/j.biocel.2007.10.014.10.1016/j.biocel.2007.10.01418060826
  46. A. Rauk, The chemistry of Alzheimer's disease, Chem. Soc. Rev. 38 (2009) 2698-2715; DOI: 10.1039/b807980n.10.1039/b807980n19690748
  47. L. E. Scott and C. Orvig, Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease, Chem. Rev. 109 (2009) 4885-4910; DOI: 10.1021/cr9000176.10.1021/cr900017619637926
  48. J. A. Duce and A. I. Bush, Biological metals and Alzheimer's disease: Implications for therapeutics and diagnostics, Prog. Neurobiol. 92 (2010) 1-18; DOI: 10.1016/j.pneurobio.2010.04.003.10.1016/j.pneurobio.2010.04.00320444428
  49. I. Bush and R. E. Tanzi, Therapeutics for Alzheimer's disease based on the metal hypothesis, Neurotherapeutics 5 (2008) 421-432; DOI: 10.1016/j.nurt.2008.05.001.10.1016/j.nurt.2008.05.001251820518625454
  50. A. Gaeta and R. C. Hider, The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy, Br. J. Pharmacol. 146 (2005) 1041-1059; DOI: 10.1038/sj.bjp.0706416.10.1038/sj.bjp.0706416175124016205720
  51. P. Zatta, D. Drago, S. Bolognin and S. L. Sensi, Alzheimer's disease, metal ions and metal homeostatic therapy, Trends Pharmacol. Sci. 30 (2009) 346-355; DOI: 10.1016/j.tips.2009.05.002.10.1016/j.tips.2009.05.00219540003
  52. L. R. Perez and K. J. Franz, Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease, Dalton Trans. 39 (2010) 2177-2187; DOI: 10.1039/b919237a.10.1039/B919237A286039720162187
  53. D. R. C. McLachlan, T. P. A. Kruck, W. Kalow, D. F. Andrews, A. J. Dalton, M. Y. Bell and W. L. Smith, Intramuscular desferrioxamine in patients with Alzheimer's disease, Lancet 337 (1991) 1304-1308; DOI: 10.1016/0140-6736(91)92978-B.10.1016/0140-6736(91)92978-B
  54. R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Aqueous dissolution of Alzheimer's disease abeta amyloid deposits by biometal depletion, J. Biol. Chem. 274 (1999) 23223-23228; DOI: 10.1074/jbc.274.33.23223.10.1074/jbc.274.33.23223
  55. R. A. Cherny, K. J. Barnham, T. Lynch, I. Volitakis, Q.-X. Li, C. A. McLean, G. Multhaup, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Chelation and intercalation: Complementary properties in a compound for the treatment of Alzheimer's disease, J. Struct. Biol. 130 (2000) 209-216; DOI: 10.1006/jsbi.2000.4285.10.1006/jsbi.2000.4285
  56. C. Boldron, I. Van der Auwera, C. Deraeve, H. Gornitzka, S. Wera, M. Pitié, F. Van Leuven and B. Meunier, Preparation of cyclo-phen-type ligands: Chelators of metal ions as potential therapeutic agents in the treatment of neurodegenerative diseases, ChemBioChem 6 (2005) 1976-1980; DOI: 10.1002/cbic.200500220.10.1002/cbic.200500220
  57. A. Dedeoglu, K. Cormier, S. Payton, K. A. Tseitlin, J. N. Kremsky, L. Lai, X. Li, R. D. Moir, R. E. Tanzi, A. I. Bush, N. W. Kowall, J. T. Rogers and X. Huang, Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis, Exp. Gerontol. 39 (2004) 1641-1649; DOI: 10.1016/j.exger.2004.08.016.10.1016/j.exger.2004.08.016
  58. Z. Cui, P. R. Lockman, C. S. Atwood, C.-H. Hsu, A. Gupte, D. D. Allen and R. J. Mumper, Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases, Eur. J. Pharm. Biopharm. 59 (2005) 263-272; DOI: 10.1016/j.ejpb.2004.07.009.10.1016/j.ejpb.2004.07.009
  59. J.-Y. Lee, J. E. Friedman, I. Angel, A. Kozak and J.-Y. Koh, The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human [beta]-amyloid precursor protein transgenic mice, Neurobiol. Aging 25 (2004) 1315-1321; DOI: 10.1016/j.neurobiolaging.2004.01.005.10.1016/j.neurobiolaging.2004.01.005
  60. V. Moret, Y. Laras, N. Pietrancosta, C. Garino, G. Quelever, A. Rolland, B. Mallet, J. C. Norreel and J. L. Kraus, 1,1 '-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: A new potential copper chelator agent for neuroprotection in Alzheimer's disease. Its comparative effects with clioquinol on rat brain copper distribution, Bioorg. Med. Chem. Lett. 16 (2006) 3298-3301; DOI: 10.1016/j.bmcl.2006.03.026.10.1016/j.bmcl.2006.03.026
  61. H. Zheng, S. Gal, L. M. Weiner, O. Bar-Am, A. Warshawsky, M. Fridkin and M. B. H. Youdim, Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition, J. Neurochem. 95 (2005) 68-78; DOI: 10.1111/j.1471-4159.2005.03340.x.10.1111/j.1471-4159.2005.03340.x
  62. D. Kaur, F. Yantiri, S. Rajagopalan, J. Kumar, J. Q. Mo, R. Boonplueang, V. Viswanath, R. Jacobs, L. Yang, M. F. Beal, D. DiMonte, I. Volitaskis, L. Ellerby, R. A. Cherny, A. I. Bush and J. K. Andersen, Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson's disease, Neuron 37 (2003) 899-909; DOI: 10.1016/S0896-6273 (03)00126-0.
  63. R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones, C. A. McLean, K. J. Barnham, I. Volitakis, F. W. Fraser, Y.-S. Kim, X. Huang, L. E. Goldstein, R. D. Moir, J. T. Lim, K. Beyreuther, H. Zheng, R. E. Tanzi, C. L. Masters and A. I. Bush, Treatment with a copper-zinc chelator markedly and rapidly inhibits [beta]-amyloid accumulation in Alzheimer's disease transgenic mice, Neuron 30 (2001) 665-676; DOI: 10.1016/S0896-6273(01)00317-8.10.1016/S0896-6273(01)00317-8
  64. H. Zheng, M. B. H. Youdim, L. M. Weiner and M. Fridkin, Synthesis and evaluation of peptidic metal chelators for neuroprotection in neurodegenerative diseases, J. Pept. Res. 66 (2005) 190-203; DOI: 10.1111/j.1399-3011.2005.00289.x.10.1111/j.1399-3011.2005.00289.x
  65. C. Deraeve, M. Pitie, H. Mazarguil and B. Meunier, Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents, New J. Chem. 31 (2007) 193-195; DOI: 10.1039/b616085a.10.1039/b616085a
  66. C. W. Ritchie, A. I. Bush, A. Mackinnon, S. Macfarlane, M. Mastwyk, L. MacGregor, L. Kiers, R. Cherny, Q.-X. Li, A. Tammer, D. Carrington, C. Mavros, I. Volitakis, M. Xilinas, D. Ames, S. Davis, K. Beyreuther, R. E. Tanzi and C. L. Masters, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial, Arch. Neurol. 60 (2003) 1685-1691; DOI: 10.1001/archneur.60.12.1685.10.1001/archneur.60.12.1685
  67. A. I. Bush, Metal complexing agents as therapies for Alzheimer's disease, Neurobiol. Aging 23 (2002) 1031-1038. DOI: 10.1016/S0197-4580(02)00120-3.10.1016/S0197-4580(02)00120-3
  68. J. Tateishi, Subacute myelo-optico-neuropathy: Clioquinol intoxication in humans and animals, Neuropathology 20 (Suppl.) S20-S24; DOI: 10.1046/j.1440-1789.2000.00296.x.10.1046/j.1440-1789.2000.00296.x
  69. M. S. Yassin, J. Ekblom, M. Xilinas, C. G. Gottfries and L. Oreland, Changes in uptake of vitamin B-12 and trace metals in brains of mice treated with clioquinol, J. Neurol. Sci 173 (2000) 40-44; DOI: 10.1016/S0022-510X(99)00297-X.10.1016/S0022-510X(99)00297-X
  70. M. Di Vaira, C. Bazzicalupi, P. Orioli, L. Messori, B. Bruni and P. Zatta, Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes, Inorg. Chem. 43 (2004) 3795-3797; DOI: 10.1021/ic0494051.10.1021/ic049405115206857
  71. C. C. Wagner, S. Calvo, M. H. Torre and E. J. Baran, Vibrational spectra of clioquinol and its Cu(II) complex, J. Raman Spectrosc. 38 (2007) 373-376; DOI: 10.1002/jrs.1654.10.1002/jrs.1654
  72. A. Budimir, N. Humbert, M. Elhabiri, I. Osinska, M. Birus and A.-M. Albrecht-Gary, Hydroxyquinoline based binders: Promising ligands for chelatotherapy?, J. Inorg. Biochem, in press; DOI: 10.1016/j.jinorgbio.2010.08.014.10.1016/j.jinorgbio.2010.08.01420926137
  73. R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion, J. Biol. Chem. 274 (1999) 23223-23228; DOI: 10.1074/jbc.274.33.23223.10.1074/jbc.274.33.2322310438495
  74. C. Grossi, S. Francese, A. Casini, M. C. Rosi, I. Luccarini, A. Fiorentini, C. Gabbiani, L. Messori, G. Moneti and F. Casamenti, Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer's disease, J. Alzheimer's Dis. 17 (2009) 423-440.10.3233/JAD-2009-1063
  75. L. Lannfelt, K. Blennow, H. Zetterberg, S. Batsman, D. Ames, J. Harrison, C. L. Masters, S. Targum, A. I. Bush, R. Murdoch, J. Wilson and C. W. Ritchie, Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial, Lancet Neurol. 7 (2008) 779-786; DOI: 10.1016/S1474-4422(08)70167-4.10.1016/S1474-4422(08)70167-4
  76. P. A. Adlard, R. A. Cherny, D. I. Finkelstein, E. Gautier, E. Robb, M. Cortes, I. Volitakis, X. Liu, J. P. Smith, K. Perez, K. Laughton, Q.-X. Li, S. A. Charman, J. A. Nicolazzo, S. Wilkins, K. Deleva, T. Lynch, G. Kok, C. W. Ritchie, R. E. Tanzi, R. Cappai, C. L. Masters, K. J. Barnham and A. I. Bush, Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ, Neuron 59 (2008) 43-55; DOI: 10.1016/j.neuron.2008.06.018.10.1016/j.neuron.2008.06.01818614028
DOI: https://doi.org/10.2478/v10007-011-0006-6 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 1 - 14
Published on: Mar 15, 2011
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year
Related subjects:

© 2011 Ana Budimir, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons License.

Volume 61 (2011): Issue 1 (March 2011)