Have a personal or library account? Click to login
Genetic polymorphisms in diabetes: Influence on therapy with oral antidiabetics Cover

Genetic polymorphisms in diabetes: Influence on therapy with oral antidiabetics

Open Access
|Dec 2010

References

  1. M. Stumvoll, B. J. Goldstein and T. W. Haeften, Type 2 diabetes: principles of pathogenesis and therapy, Lancet 365 (2005) 1333-1346; DOI: 10.1016/S0140-6736(05)61032-X.10.1016/S0140-6736(05)61032-X
  2. M. Małecki and J. Skupień, Problems in differential diagnosis of diabetes types, Pol. Arch. Med. Wewn. 118 (2008) 435-440.
  3. K. Almind, A. Doria and C. R. Kahn, Putting the genes for type 2 diabetes on the map, Nat Med. 7 (2001) 277-279; DOI: 10.1038/85405.10.1038/8540511231616
  4. M. N. Weedon, M. I. McCarthy, G. Hitman, M. Walker, C. J. Groves, E. Zeggini, N. W. Rayner, B. Shields, K. R. Owen, A. T. Hattersley and T. M. Frayling, Combining information from common type 2 diabetes risk polymorphisms improves disease prediction, PLoS Med. 3 (2006) e374; DOI: 10.1371/journal.pmed.0030374.10.1371/journal.pmed.0030374158441517020404
  5. R. Murphy, S. Ellard and A. T. Hattersley, Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes, Nat. Clin. Pract. Endocr. Metab. 4 (2008) 200-213; DOI: 10.1038/ncpendmet0778.10.1038/ncpendmet077818301398
  6. O. Nyunt, J. Y. Wu, I. N. McGown, M. Harris, T. Huynh, G. M. Leong, D. M. Cowley and A. M. Cotterill, Investigating maturity onset diabetes of the young, Clin. Biochem. Rev. 30 (2009) 67-74.
  7. C. Rongrong, H. Khalid and A. A. Maryam, Neonatal and late-onset diabetes mellitus caused by failure of pancreatic development: report of 4 more cases and a review of the literature. Pediatrics 121 (2008) 1541-1547; DOI: 10.1542/peds.2007-3543.10.1542/peds.2007-354318519458
  8. L. Aguilar-Bryan and J. Bryan, Neonatal diabetes mellitus, Endocr. Rev. 29 (2008) 265-291; DOI: 10.1210/er.2007-0029.10.1210/er.2007-0029252885718436707
  9. M. Polak and H. Cavé, Neonatal diabetes mellitus: a disease linked to multiple mechanisms, Orphanet J. Rare Dis. 2 (2007) 12; DOI: 10.1186/1750-1172-2-12.10.1186/1750-1172-2-12184780517349054
  10. W. E. Evans and H. L. McLeod, Pharmacogenomics - drug disposition, drug targets and side effects, N. Engl. J. Med. 6 (2003) 538-549; DOI: 10.1056/NEJMra020526.10.1056/NEJMra02052612571262
  11. R. Weinshilboum, Inheritance and drug response, N. Engl. J. Med. 348 (2003) 529-537; DOI: 10.1056/NEJMra020021.10.1056/NEJMra02002112571261
  12. W. E. Evans and M. V. Relling, Pharmacogenomics: translating functional genomics into rational therapeutics, Science 286 (1999) 487-491; DOI: 10.1126/science.286.5439.487.10.1126/science.286.5439.48710521338
  13. Y. Nakamura, Pharmacogenomics and drug toxicity, N. Engl. J. Med. 8 (2008) 856-858; DOI: 10.1056/NEJMe0805136.10.1056/NEJMe080513618650508
  14. R. A. Wilke, D. W. Lin, D. M. Roden, P. B. Watkins, D. Flockhart, I. Zineh, K. M. Giacomini and R. M. Krauss, Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges, Nat. Rev. Drug. Discov. 6 (2007) 904-916; DOI: 10.1038/nrd2423.10.1038/nrd2423276392317971785
  15. N. Azarpira and M. H. Aghdaie, Frequency of C3435 MDR1 and A6896G CYP3A5 single nucleotide polymorphism in an Iranian population and comparison with other ethnic groups, Mod. J. Ist. Rep. Iran 20 (2006) 131-136.
  16. J. L. Evans and R. J. Rushakoff, Oral Pharmacological Agents for Type 2 Diabetes: Oral Agents, Incretions and other »Non-Insulin« Pharmacologic Interventions for Diabetes, Endo Text. Org. - The Endocrine Source, Diabetes Manager (Eds. I. D. Goldfine and R. J. Rushakoff) last author version May 2010; http://diabetesmanager.pbworks.com/w/page/17680289/Oral-Pharmacological-Agents-for-Type-2-Diabetes
  17. B. Vrhovac, I. Aganović, B. Anić, V. Barbarić Babić, I. Bakran, I. Barić, B. Baršić, J. Begovac, A. Beus, M. Bilušić, V. Bradamante, B. Srećko, B. Buljević, D. Čvorišćec, V. Degoricija, V. Dorn, Z. Duraković, V. Erdeljić, I. Francetić, V. Gašparović, I. Gjenero Margan, M. Herceg, M. Huić, V. Ivančan, D. Ivanović, T. Jukić, S. Kalenić, R. Katalinić, M. Katić, P. Kes, I. Klinar, M. Koršić, Ž. Krznarić, S. Lovasić, A. Lovrenčić Huzjan, M. Lovrenčić, D. Macan, V. Macolić Šarinić, K. Makar-Aušperger, I. Merćep, Ž. Metelko, S. Ostojić Kolonić, J. Pasini, I. Radman, Ž. Reiner, D. Rogić, M. Skerlev, E. Verona-Krznar, H. Vrčić, R. Vrhovac, I. Vukušić and S. Zupančić-Šalek, Farmakoterapijski priručnik, 4th ed., Medicinska naklada, Zagreb 2003, pp. 89-93.
  18. N. Mulabegović, S. Lučić, S. Loga Zec, S. Čustović and F. Bečić, Registar lijekova s osnovama farmakoterapije 11, Federalno ministarstvo zdravstva: Udruženje farmakologa Federacije Bosne i Hercegovine, Sarajevo 2009, pp. 106-117.
  19. R. K. Campbell, Type 2 diabetes: where we are today: An overview of disease burden, current treatments, and treatment strategies, J. Am. Pharm. Assoc. 49 (Suppl 1) (2009) S3-S9; DOI: 10.1331/JAPhA.2009.09077.10.1331/JAPhA.2009.0907719801365
  20. M. L. Reitman and E. E. Schadt, Pharmacogenetics of metformin response: a step in the path toward personalized medicine, J. Clin. Invest. 117 (2007) 1226-1229; DOI: 10.1172/JCI32133.10.1172/JCI32133185727317476355
  21. M. I. McCarthy and A. T. Hattersley, Learning from molecular genetics. Novel insights arising from the definition of genes for monogenic and type 2 diabetes, Diabetes 57 (2008) 2889-2898; DOI: 10.2337/db08-0343.10.2337/db08-0343257038118971436
  22. A. T. Hattersley, Unlocking the secrets of the pancreatic β cell: man and mouse provide the key, J. Clin. Invest. 114 (2004) 314-316; DOI: 10.1172/JCI200422506.10.1172/JCI200422506
  23. A. T. Hattersley and E. R. Pearson, Minireview: Pharmacogenetics and beyond: The interaction of therapeutic response, β-cell physiology, and genetics in diabetes, Endocrinology 147 (2006) 2657-2663; DOI: 10.1210/en.2006-0152.10.1210/en.2006-015216556760
  24. R. Khalil, F. Al-Sheyab, E. Khamaiseh, M. A. Halaweh and H. A. Abder-Rahman, Screening of mutations in the GCK gene in Jordanian maturity-onset diabetes of the young type 2 (MODY2) patients, Genet. Mol. Res. 8 (2009) 500-506; DOI: 10.4238/vol8-2gmr597.10.4238/vol8-2gmr59719551638
  25. N. Tinto, A. Zagari, M. Capuano, A. De Simone, V. Capobianco, G. Daniele, M. Giugliano, R. Spadaro, A. Franzese and L. Sacchetti, Glucokinase gene mutations: Structural and genotype-phenotype analyses in MODY children from south Italy, PLoS One 3 (2008) 1870; DOI: 10.1371/journal.pone.0001870.10.1371/journal.pone.0001870227033618382660
  26. P. Froguel, H. Zouali, N. Vionnet, G. Velho, M. Vaxillaire, F. Sun, S. Lesage, M. Stoffel, J. Takeda, P. Passa, M. A. Permutt, J. S. Beckmann, G. I. Bell and D. Cohen, Familial hyperglycemia due to mutations in glucokinase - definition of a subtype of diabetes mellitus, N. Engl. J. Med. 328 (1993) 697-702; DOI: 10.1056/NEJM199303113281005.10.1056/NEJM1993031132810058433729
  27. E. R. Pearson, G. Velho, P. Clark, A. Stride, M. Shepherd, T. M. Frayling, M. P. Bulman, S. Ellard, P. Froguel and A. T. Hattersley, β-Cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1α and glucokinase mutations, Diabetes 50 (2001) S101-S107; DOI: 10.2337/diabetes.50.2007.S101.10.2337/diabetes.50.2007.S101
  28. A. Stride, S. Ellard, P. Clark, L. Shakespeare, M. Salzmann, M. Shepherd and A. T. Hattersley, β-Cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1α mutation carriers, Diabetes Care 28 (2005) 1751-1756; DOI: 10.2337/diacare.28.7.1751.10.2337/diacare.28.7.1751
  29. T. M. Frayling, J. C. Evans, M. P. Bulman, E. Pearson, L. Allen, K. Owen, C. Bingham, M. Hannemann, M. Shepherd, S. Ellard and A. T. Hattersley, β-Cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors, Diabetes 50 (2001) S94-S100; DOI: 10.2337/diabetes.50.2007.S94.10.2337/diabetes.50.2007.S94
  30. I. D. Dukes, S. Sreenan, M. W. Roe, M. Levisetti, Y. P. Zhou, D. Ostrega, G. I. Bell, M. Pontoglio, M. Yaniv, L. Philipson and K. S. Polonsky, Defective pancreatic β-cell glycolytic signaling in hepatocyte nuclear factor-1α-deficient mice, J. Biol. Chem. 273 (1998) 24457-24464; DOI: 10.1074/jbc.273.38.24457.10.1074/jbc.273.38.24457
  31. H. Wang, P. A. Antinozzi, K. A. Hagenfeldt, P. Maechler and C. B. Wollheim, Molecular targets of a human HNF1α mutation responsible for pancreatic β-cell dysfunction, EMBO J. 19 (2000) 4257-4264; DOI: 10.1093/emboj/19.16.4257.10.1093/emboj/19.16.4257
  32. E. R. Pearson, W. G. Liddell, M. Shepherd, R. J. Corrall and A. T. Hattersley, Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor 1α gene mutations: evidence for pharmacogenetics in diabetes, Diabetic Med. 17 (2000) 543-545; DOI: 10.1046/j.1464-5491.2000.00305.x.10.1046/j.1464-5491.2000.00305.x
  33. E. R. Pearson, B. J. Starkey, R. J. Powell, F. M. Gribble, P. M. Clark and A. T. Hattersley, Genetic cause of hyperglycaemia and response to treatment in diabetes, Lancet 362 (2003) 1275-1281; DOI: 10.1016/S0140-6736(03)14571-0.10.1016/S0140-6736(03)14571-0
  34. P. Boileau, C. Wolfrum, D. Q. Shih, T. A. Yang, A. W. Wolkoff and M. Stoffel1, Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1α-deficient mice. A mechanism for hypersensitivity to sulfonylurea therapy in patients with Maturity-Onset Diabetes of the Young, Type 3 (MODY3), Diabetes 51 (2002) 343-348; DOI: 10.2337/diabetes.51.2007.S343.10.2337/diabetes.51.2007.S34312475773
  35. E. H. Hathout, B. N. Cockburn, J. W. Mace, J. Sharkney, J. Chen-Daniel and G. I. Bell, A case of hepatocyte nuclear factor-1α diabetes/MODY 3 masquerading as type 1 diabetes in a Mexican-American adolescent and responsive to a low dose of sulphonylurea (letter), Diabetes Care 22 (1999) 867-868; DOI: 10.2337/diacare.22.5.867.10.2337/diacare.22.5.86710332709
  36. A. P. Lambert, S. Ellard, L. I. Allen, I. W. Gallen, K. M. Gillespie, P. Bingley and A. T. Hattersley, Identifying hepatic nuclear factor 1α mutations in children and young adults with a clinical diagnosis of type 1 diabetes, Diabetes Care 26 (2003) 333-337; DOI: 10.2337/diacare.26.2.333.10.2337/diacare.26.2.33312547858
  37. M. Shepherd, E. R. Pearson, J. Houghton, G. Salt, S. Ellard and A. T. Hattersley, No deterioration in glycemic control in HNF-1α maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas, Diabetes Care 26 (2003) 3191-3192; DOI: 10.2337/diacare.26.11.3191-a.10.2337/diacare.26.11.3191-a14578267
  38. T. H. Lindner, P. R. Njolstad, Y. Horikawa, L. Bostad, G. I. Bell and O. Sovik, A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1β, Hum. Mol. Genet. 8 (1999) 2001-2008; DOI: 10.1093/hmg/8.11.2001.10.1093/hmg/8.11.200110484768
  39. E. R. Pearson, M. K. Badman, C. R. Lockwood, P. M. Clark, S. Ellard, C. Bingham and A. T. Hattersley, Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1α and -1β mutations, Diabetes Care 27 (2004) 1102-1107; DOI: 10.2337/diacare.27.5.1102.10.2337/diacare.27.5.110215111528
  40. M. A. Maestro, S. F. Boj, R. F. Luco, C. E. Pierreux, J. Cabedo, J. M. Servitja, M. S. German, G. G. Rousseau, F. P. Lemaigre and J. Ferrer, Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas, Hum. Mol. Genet. 12 (2003) 3307-3314; DOI: 10.1093/hmg/ddg355.10.1093/hmg/ddg35514570708
  41. R. Masia, J. C. Koster, S. Tumini, F. Chiarelli, C. Colombo, C. G. Nichols and F. Barbetti, An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes, Diabetes 56 (2007) 328-336; DOI: 10.2337/db06-1275.10.2337/db06-127517259376
  42. M. A. Sperling, ATP-sensitive potassium channels - neonatal diabetes mellitus and beyond, N. Engl. J. Med. 355 (2006) 507-510; DOI: 10.1056/NEJMe068142.10.1056/NEJMe06814216885555
  43. D. Enkvetchakul and C. G. Nichols, Gating mechanism of KATP channels: function fits form, J. Gen. Physiol. 5 (2003) 471-480; DOI: 10.1085/jgp.200308878.10.1085/jgp.200308878222958514581579
  44. P. Proks, J. F. Antcliff, J. Lippiat, A. L. Gloyn, A. T. Hattersley and F. M. Ashcroft, Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features, Proc. Natl. Acad. Sci. USA 101 (2004) 17539-17544; DOI: 10.1073/pnas.0404756101.10.1073/pnas.040475610153601415583126
  45. E. R. Pearson, I. Flechtner, P. R. Njølstad, M. T. Malecki, S. E. Flanagan, B. Larkin, F. M. Ashcroft, I. Klimes, E. Codner, V. Iotova, A. S. Slingerland, J. Shield, J. J. Robert, J. J. Holst, P. M. Clark, S. Ellard, O. Søvik, M. Polak and A. T. Hattersley, Neonatal diabetes international collaborative group, Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations, N. Engl. J. Med. 355 (2006) 467-477; DOI: 10.1056/NEJMoa061759.10.1056/NEJMoa06175916885550
  46. J. C. Koster, M. S. Remedi, C. Dao and C. G. Nichols, ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy, Diabetes 54 (2005) 2645-2654; DOI: 10.2337/diabetes.54.9.2645.10.2337/diabetes.54.9.264516123353
  47. A. P. Babenko, M. Polak, H. Cavé, K. Busiah, P. Czernichow, R. Scharfmann, J. Bryan, L. Aguilar-Bryan, M. Vaxillaire and P. Froguel, Activating mutations in the ABCC8 gene in neonatal diabetes mellitus, N. Engl. J. Med. 355 (2006) 456-466; DOI: 10.1056/NEJMoa055068.10.1056/NEJMoa05506816885549
  48. M. Rafiq, S. E. Flanagan, A. M. Patch, B. M. Shields, S. Ellard and A. T. Hattersley, The Neonatal diabetes international collaborative group, Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations, Diabetes Care 31 (2008) 204-209; DOI: 10.2337/dc07-1785.10.2337/dc07-1785761180718025408
  49. A. Zung, B. Glaser, R. Nimri and Z. Zadik, Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2, J. Clin. Endocrinol. Metab. 89 (2004) 5504-5507; DOI: 10.1210/jc.2004-1241.10.1210/jc.2004-124115531505
  50. M. S. Remedi and C. G. Nichols, Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic β-cells, PLoS Med. 5 (2008) e206; DOI: 10.1371/journal.pmed.0050206.10.1371/journal.pmed.0050206257390918959471
  51. G. Sesti, E. Laratta, M. Cardellini, F. Andreozzi, S. Del Guerra, C. Irace, A. Gnasso, M. Grupillo, R. Lauro, M. L. Hribal, F. Perticone and P. Marchetti, The E23K variant of KCNJ11 encoding the pancreatic β-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes, J. Clin. Endocr. Metab. 91 (2006) 2334-2339; DOI: 10.1210/jc.2005-2323.10.1210/jc.2005-232316595597
  52. J. Kirchheiner, I. Roots, M. Goldammer, B. Rosenkranz and J. Brockmöller, Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance, Clin. Pharmacokin. 44 (2005) 1209-1225; DOI: 10.2165/00003088-200544120-00002.10.2165/00003088-200544120-0000216372821
  53. A. Holstein, A. Plaschke, M. Ptak, E. H. Egberts, J. El-Din, J. Brockmöller and J. Kirchheiner, Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents, Br. J. Clin. Pharmacol. 60 (2005) 103-106; DOI: 10.1111/j.1365-2125.2005.02379.x.10.1111/j.1365-2125.2005.02379.x188489615963101
  54. J. Kirchheiner, J. Brockmöller, I. Meineke, S. Bauer, W. Rohde, C. Meisel and I. Roots, Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers, Clin. Pharmacol. Ther. 71 (2002) 286-296; DOI: 10.1067/mcp.2002.122476.10.1067/mcp.2002.12247611956512
  55. J. Kirchheiner, S. Bauer, I. Meineke, W. Rohde, V. Prang, C. Meisel, I. Roots and J. Brockmöller, Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and on the insulin and glucose response in healthy volunteers, Pharmacogenetics 12 (2002) 101-109; DOI: 10.1067/mcp.2002.122476.10.1067/mcp.2002.122476
  56. J. Kirchheiner, I. Meineke, G. Müller, S. Bauer, W. Rohde, C. Meisel, I. Roots and J. Brockmöller, Influence of CYP2C9 and CYP2D6 polymorphisms on pharmacokinetics of nateglinide in genotyped healthy volunteers, J. Clin. Pharmacokin. 43 (2004) 267-278; DOI: 10.2165/00003088-200443040-00005.10.2165/00003088-200443040-0000515005635
  57. Q. Huang, J. Y. Yin, X. P. Dai, Q. Pei, M. Dong, Z. G. Zhou, X. Huang, M. Yu, H. H. Zhou and Z. Q. Liu, IGF2BP2 variations influence repaglinide response and risk of type 2 diabetes in Chinese population, Acta Pharmacol. Sin. 31 (2010) 709-717; DOI: 10.1038/aps.2010.47.10.1038/aps.2010.47400297020523342
  58. O. Bozkurt, A. de Boer, D. E. Grobbee, E. R. Heerdink, H. Burger and O. H. Klungel, Pharmacogenetics of glucose-lowering drug treatment: a systematic review, Mol. Diagn. Ther. 11 (2007) 291-302.10.1007/BF0325625017963417
  59. Y. Shu, S. A. Sheardown, C. Brown, R. P. Owen, S. Zhang, R. A. Castro, A. G. Ianculescu, L. Yue, J. C. Lo, E. G. Burchard, C. M. Brett and K. M. Giacomini, Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action, J. Clin. Invest. 117 (2007) 1422-1431; DOI: 10.1172/JCI30558.10.1172/JCI30558185725917476361
  60. D. S. Wang, J. W. Jonker, Y. Kato, H. Kusuhara, A. H. Schinke and Y. Sugiyama, Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin, J. Pharmacol. Exp. Ther. 302 (2002) 510-515; DOI: 10.1124/jpet.102.034140.10.1124/jpet.102.03414012130709
  61. N. Kimura, S. Masuda, Y. Tanihara, H. Ueo, M. Okuda, T. Katsura and K. Inui, Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1, Drug Metab. Pharmacokin. 20 (2005) 379-386; DOI: 10.2133/dmpk.20.379.10.2133/dmpk.20.37916272756
  62. E. R. Pearson, L. A. Donnelly, C. Kimber, A. Whitley, A. S. Doney, M. I. McCarthy, A. T. Hattersley, A. D. Morris and C. N. Palmer, Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study, Diabetes 56 (2007) 2178-2182; DOI: 10.2337/db07-0440.10.2337/db07-044017519421
  63. J. K. Wolford, K. A. Yeatts, S. K. Dhanjal, M. H. Black, A. H. Xiang, T. A. Buchanan and R. M. Watanabe, Sequence variation in PPARG may underlie differential response to troglitazone, Diabetes 54 (2005) 3319-3325; DOI: 10.2337/diabetes.54.11.3319.10.2337/diabetes.54.11.3319292344516249460
  64. S. Snitker, R. M. Watanabe, I. Ani, A. H. Xiang, A. Marroquin, C. Ochoa, J. Goico, A. R. Shuldiner and T. A. Buchanan, Troglitazone in prevention of diabetes (TRIPOD) study, Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Pro12Ala PPAR-γ-2 gene variant: results from the troglitazone in prevention of diabetes (TRIPOD) study, Diabetes Care 27 (2004) 1365-1368; DOI: 10.2337/diacare.27.6.1365.10.2337/diacare.27.6.1365292856515161789
  65. M. Blüher, G. Lübben and R. Paschke, Analysis of the relationship between the Pro12Ala variant in the PPAR-γ2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes, Diabetes Care 26 (2003) 825-831; DOI: 10.2337/diacare.26.3.825.10.2337/diacare.26.3.82512610044
  66. K. H. Zhang, Q. Huang, X. P. Dai, J. Y. Yin, W. Zhang, G. Zhou, H. H. Zhou and Z. Q. Liu, Effects of the peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) Thr394Thr and Gly482Ser polymorphisms on rosiglitazone response in Chinese patients with type 2 diabetes mellitus, J. Clin. Pharmacol. 50 (2010) 1022-1030; DOI: 10.1177/0091270009355159.10.1177/009127000935515920498286
  67. H. J. Pan, P. Reifsnyder, D. E. Vance, Q. Xiao and E. H. Leiter, Pharmacogenetic analysis of rosiglitazone-induced hepatosteatosis in new mouse models of type 2 diabetes, Diabetes 54 (2005) 1854-1862; DOI: 10.2337/diabetes.54.6.1854.10.2337/diabetes.54.6.185415919809
  68. R. L. Jacobs, C. Devlin, I. Tabas and D. E. Vance, Targeted deletion of hepatic CTP: phosphocholine cytidyltransferase a in mice decreases plasma high density and very low density lipoproteins, J. Biol. Chem. 279 (2004) 47402-47410; DOI: 10.1074/jbc.M404027200.10.1074/jbc.M40402720015331603
DOI: https://doi.org/10.2478/v10007-010-0040-9 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 387 - 406
Published on: Dec 17, 2010
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2010 Una Glamočlija, Adlija Jevrić-Čaušević, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons License.

Volume 60 (2010): Issue 4 (December 2010)