Have a personal or library account? Click to login
Physical mechanisms and methods employed in drug delivery to tumors Cover

Physical mechanisms and methods employed in drug delivery to tumors

By: Erim Bešić  
Open Access
|Sep 2007

References

  1. R. G. Fenton and D. I. Longo, Cell Biology of Cancer, in Harrison's Internal Medicine (Eds. A. S. Fauci, E. Braunwald, D. L. Kasper, S. L. Hauser, D. L. Longo and J. L. Jameson), 14th ed., Vol 1, McGraw Hill, New York 1998, pp. 505--511.
  2. J. L.-S. Au, S. H. Jang, J. Zheng, C.-T. Chen, S. Song, L. Hu and M. G. Wientjes, Determinants of drug delivery and transport to solid tumors, J. Control. Release74 (2001) 31--46; DOI: 10.1016/0168-3659(01)00308-2.
  3. H. Maeda and Y. Matsumura, Tumotropic and lymphotropic principles of macromolecular drugs, Crit. Rev. Ther. Drug Carrier Syst.6 (1989) 183--210.
  4. K. Ulbrich, T. Etrych, P. Chytil, M. Jelenkova and B. Rihova, HPMA copolymers with pH-controlled release of doxorubicin. In vitro cytotoxicity and antitumor activity, J. Control. Release87 (2003) 33--47; DOI: 10.1016/0168-3659(02)00348-6.
  5. Y. J. Son, J.-S. Jang, Y. W. Cho, H. Chung, R.-W. Park, I. C. Kwon, I.-S. Kim, J. Y. Park, S. B. Seo, C. R. Park and S. Y. Jeong, Biodistribution and antitumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect, J. Control. Release91 (2003) 135--145; DOI: 10.1016/0168-3659(03)00231-1.
  6. S. S. Dharap, B. Qui, G. C. Williams, P. Sinko, S. Stein and T. Minko, Molecular targeting of the drug delivery systems to ovarian cancer by BH3 and LHRH peptides, J. Control. Release91 (2003) 61--73; DOI: 10.1016/0168-3659(02)00209-8.
  7. Y. Sadzuka, R. Hirota and T. Sonobe, Interperitoneal administration of doxorubicin encapsulating liposomes against peritoneal dissemination, Toxicol. Lett.116 (2000) 51--59; DOI: 10.1016/0378-4274(00)00201-0.
  8. K. Greish, T. Sawa, J. Fang, T. Akaike and H. Maeda, MA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumors, J. Control. Release97 (2004) 219--230; DOI: 10.1016/j.conrel.2004.03.027.
  9. T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai and K. Kataoka, Development of the polymeric micelle carrier system for doxorubicin, J. Control. Release74 (2001) 295--302; DOI: 10.1016/0168-3659(01)00341-8.
  10. D. L. Garrec, M. Ranger and J. C. Leroux, Micelles in anticancer drug delivery, Am. J. Drug Deliv.2 (2004) 15--42; DOI: 10.1175.9038(04)0002-1.10.2165/00137696-200402010-00002
  11. T. Tamura, F. Fujita, M. Tanimoto, M. Koike, A. Suzuki, M. Fujita, Y. Horikiri, Y. Sakamoto, T. Suzuki and H. Yoshino, Antitumor effect of interperitoneal administration of cisplatin-loaded microspheres to human tumor xenografted nude mice, J. Control. Release80 (2002) 295--307; DOI: 10.1016/0168-3659(02)00003-2.
  12. J. S. Chawla and M. M. Amiji, Biodegradable poly(-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm.249 (2002) 127--138; DOI: 10.1016/0378-5173(02)00483-0.
  13. J. S. Chawla and M. M. Amiji, Cellular uptake and concentrations of tamoxifen upon administration in poly(-caprolactone) nanoparticles, AAPS PharmSci5 (2003) Article 3; DOI: 10.1208/ps050103.10.1208/ps050103
  14. C. Fonseca, S. Siomes and R. Gaspar, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro antitumoral activity, J. Control. Release83 (2002) 273--286; DOI: 10.1016/0168-3659(02)00212-2.
  15. J. H. Poupaert and P. Couvreur, A computationally derived structural model of doxorubicin interacting with oligomeric polyalkylcyanoacrylate in nanoparticles, J. Control. Release92 (2003) 19--26; DOI: 10.1016/0168-3659(03)00177-9.
  16. L. H. Reddy, R. K. Sharma, K. Chuttani, A. K. Mishra and R. S. R. Murthy, Influence and administration route on tumor uptake and biodistribution of etoposide loaded tripalmitin nanoparticles in Dalton's lymphoma tumor bearing mice, J. Control. Release105 (2005) 185--198; DOI: 10.1016/j.conrel.2005.02.028.
  17. J. Williams, R. Lansdown, R. Sweitzer, M. Romanowski, R. Labell, R. Ramaswami and E. Unger, Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors, J. Control. Release91 (2003) 167--172; DOI: 10.1016/0168-3659(03)00241-4.
  18. W. Vogelhuber, T. Spruss, G. Bernhardt, A. Buschauer and A. Göpferich, Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts, Int. J. Pharm.238 (2002) 111--121; DOI: 10.1016/0378-5173(02)00061-3.
  19. H. Maeda, K. Greish and J. Fang, The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy, in Polymer Therapeutics II: Polymers as Drugs, Conjugates and Gene Delivery Systems (Eds. R. Satchi-Fainaro and R. Duncan), Springer-Verlag, Berlin 2006, pp. 103--121.10.1007/12_026
  20. H. Maeda, J. Wu, T. Sawa, Y. Matsumura and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics, J. Control. Release65 (2000) 271--284; DOI: 10.1016/0168-3659(99)00248-5.
  21. A. K. Iyer, G. Khaled, J. Fang and H. Maeda, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today11 (2006) 812--818; DOI: 10.1016/j.drudis.2006.07.005.10.1016/j.drudis.2006.07.00516935749
  22. H. Maeda, T. Sawa and T. Kono, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, J. Control. Release74 (2001) 47--61; DOI: 10.1016/0168-3659(01)00309-1.
  23. B. A. Almond, A. R. Hadba, S. T. Freeman, B. J. Cuevas, A. M. York, C. J. Detrisac and E. P. Goldberg, Efficacy of mitoxantrone-loaded albinum microspheres for intratumoral chemotherapy of breast cancer, J. Control. Release91 (2003) 147--155; DOI: 10.1016/0168-3659(03)00214-1.
  24. E. S. Casper, D. P. Kelsen, N. W. Alcock and J. L. Lewis, IP cisplatin in patients with malignant ascites: pharmacokinetic evaluation and comparison with the iv route, Cancer Treat. Rev.67 (1983) 235--238.
  25. E. S. Lee, K. Na and Y. H. Bae, Polymeric micelle for tumor pH and folate mediated targeting, J. Control. Release91 (2003) 103--113; DOI: 10.1016/0168-3659(03)00239-6.
  26. P. V. Paranjpe, Y. Chen, V. Kholodovych, W. Welsh, S. Stein and P. J. Sinko, Tumor-targeted bioconjugate based delivery of camptothecin: design, synthesis and in vitro evaluation, J. Control. Release100 (2004) 275--292; DOI: 10.1016/j.conrel.2004.08.030.
  27. M. O. Oyewumi and R. J. Mumper, Influence of formulation parameters on gadolinium entrapment and tumor cell uptake using folate-coated nanoparticles, Int. J. Pharm.251 (2003) 85--97; DOI: 10.1016/0378-5173(02)00587-2.
  28. A. S. E. Ojugo, P. M. J. McSheehy, D. J. O. McIntyre, C. McCoy, M. Stubbs, M. O. Leach, I. R. Judson and J. R. Griffiths, Measurement of intracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous 19F and 31P probes, NMR Biomed.12 (1999) 495--504; DOI: 10.1002/(SICI)1099-1492(1999)12:8.
  29. S. K. Han, K. Na and Y. H. Bae, Sulfonamide base pH-sensitive polymeric micelles: physicochemical characteristics and pH dependant aggregation, Colloid Surface A: Physicochem. Eng. Aspects214 (2003) 49--59; DOI: 10.1016/0927-7757(02)00389-8.
  30. K. Na, E. S. Lee and Y. H. Bae, Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH dependant cell interaction, internalization and cytotoxicity in vitro, J. Control. Release87 (2003) 3--13; DOI: 10.1016/0168-3659(02)00345-0.
  31. C. Lackey, O. Press, A. Hoffman and P. Stayton, A biomimetic pH-responsive polymer directs endosomal release and intracellualar delivery of an endocytosed antibody complex, Bioconj. Chem.13 (2002) 996--1001; DOI: 10.1109/bioconchem.2002.844619.
  32. N. Murthy, J. Campbell, N. Fausto, A. S. Hoffman and P. S. Stayton, Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs, Bioconj. Chem.14 (2003) 412--419; DOI: 10.1109/bioconchem.2003.733726.
  33. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano and Y. Sakurai, Block copolymer micelles as vehicles for drug delivery, J. Control. Release24 (1993) 119--132.
  34. A. Halperin and S. Alexander, Polymeric micelles: their relaxation kinetics, Macromol.22 (1989) 2403--2412.
  35. A. Rolland, J. O'Mullane, P. Goddard, L. Brookman and K. Petrak, New macromolecular carriers for drugs, J. Appl. Polym. Sci.44 (1992) 1195--1208.
  36. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto and G. S. Kwon, Doxorubicin-loaded poly(ethylene glycol)-poly(-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristic and biological significance, J. Control. Release64 (2000) 143--153; DOI: 10.1016/0168-3659(00)00133-9.
  37. G. S. Kwon and K. Kataoka, Block copolymer micelles as long circulating drug vehicles, Adv. Drug Deliv. Rev.16 (1995) 295--309.
  38. A. V. Kabanov and V. Alakhov, Micelles of Amphiphilic Block Copolymers as Vechicles for Drug Delivery, in Amphiphilic Block Copolymers: Self Assembly and Applications (Eds. P. Alexandridis and B. Lindman), Elsevier, Amsterdam 1997, pp. 134--148.
  39. P. Alexandridis and T. A. Hatton, Poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics and modeling, Colloids Surface A: Physicochem. Eng. Aspects96 (1995) 1--46; DOI: 10.1016/0927-7757(94)03028-1.
  40. N. Rapoport, Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery, Colloid Surface B: Biointerfaces3 (1999) 93--111; DOI: 10.1517/17425247.3.1.139.10.1517/17425247.3.1.13916370946
  41. G. Husseini, G. Myrup, W. Pitt, D. Christensen and N. Rapoport, Factors affecting acoustically triggered release of drugs from polymeric micelles, J. Control. Release69 (2000) 43-52; DOI: 10.1016/0168-3659(00)00278-9.
  42. N. Munshi, N. Rapoport and W. G. Pitt, Ultrasonic activated drug delivery from Pluronic P-105 micelles, Cancer Lett.118 (1997) 13--19; DOI: 10.1016/0304-3835(97)00218-8.
  43. A. Marin, M. Muniruzzaman and N. Rapoport, Mechanism of the ultrasonic activation of micellar drug delivery, J. Control. Release75 (2001) 69--81; DOI: 10.1016/0168-3659(01)00363-7.
  44. A. Marin, H. Sun, G. Husseini, W. Pitt, D. Christensen and N. Rapoport, Drug Delivery in Pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake, J. Control. Release84 (2002) 39--47; DOI: 10.1016/0168-3659(02)00262-6.
  45. N. Rapoport, A. Marin and D. Christensen, Ultrasound-activated micellar drug delivery, Drug Deliv. Systems Sci.2 (2002) 37--46.
  46. M. D. Bednarski, J. W. Lee, M. R. Callstrom and K. C. Li, In vivo target-specific delivery of macromolecular agents with MR-guaded focused ultrasound, Radiology204 (1997) 263--268; DOI: 10.1148/radiol.2381042078.10.1148/radiol.238104207816373769
  47. D. E. Tilley and W. Thumm, Physics for College Students (with the applications to the life sciences), Cummings Publishing Co., Menlo Park 1994.
  48. R. E. Apfel, Physical Acoustics, in Methods in Experimental Physics (Ed. P. D. Edmonts), Vol 19, Academic Press, New York 1981, pp. 356--413.
  49. J. Liu, T. N. Lewis and M. R. Prausnitz, Non-invasive assessment and control of ultrasound--mediated membrane permeabilization, Pharm. Res.15 (1988) 918--924.
  50. L. B. Feril, T. Kondo and Q. L. Zhao, Enhancement of ultrasound-induced apoptosis and cell lysis by echo contrast agents, Ultrasound Med. Biol.29 (2003) 331--337; DOI: 10.1016/0301-562(02)00700-7.
  51. V. Frenkel, A. Etherington, M. Greene, J. Quijano, J. W. Xie, F. Hunter, S. Dromi and K. C. P. Li, Delivery of liposomal doxorubicin in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure, Acad. Radiol.13 (2006) 469--479; DOI: 10.1016/j.acra.2005.08.024.10.1016/j.acra.2005.08.02416554227
  52. N. M. Emanuel, G. N. Bogdanov and V. S. Orlov, Free-radical mechanisms in the cytotoxic action of antitumor antibiotics, Russian Chem. Rev.53 (1984) 1121--1138.
  53. N. Rapoport, W. G. Pitt, H. Sun and J. L. Nelson, Drug delivery in polymeric micelles: from in vitro to in vivo, J. Control. Release91 (2003) 85--95; DOI: 10.1016/0168-3659(03)00218-9.
  54. E. Bešić, K. Sanković, V. Gomzi and J. N. Herak, Sigma radicals in gamma-irradiated single crystals of 2-thiothymine, Phys. Chem. Chem. Phys.3 (2001) 2723--2725; DOI: 10.1039/6103210k.
  55. K. Sanković, E. Malinen, J. N. Herak, Z. Medunić and E. Sagstuen, Hole transfer in crystals of cytosyne monohydrate: an EPR study, Phys. Chem. Chem. Phys.5 (2003) 1665--1670; DOI: 10.1039/b211108j.10.1039/b211108j
  56. D. Krilov, A. Lekić, E. Bešić and J. N. Herak, EPR study of a copper center in a single crystal of cytosine monohydrate, J. Inorg. Biochem.99 (2005) 886--889; DOI: 10.1016/j.inorgbio.2005.01.001.
  57. E. Bešić, V. Gomzi, K. Sanković, J. N. Herak and D. Krilov, EPR study of a copper impurity center in a single crystal of 2-thiothymine, Spectrochim. Acta A61 (2005) 2803--2808; DOI: 10.1016/j.saa.2004.10.026.10.1016/j.saa.2004.10.02616165017
  58. M. Gabričević, E. Bešić, M. Biruš, A. Zahl and R. Van Eldik, Oxidation of hydroxyurea with oxovanadium(V) ions in acidic aqueous solution, J. Inorg. Biochem.100 (2006) 1606--1613; DOI: 10.1016/j.inorgbio.2006.05.008.
  59. B. Nigović, N. Kujundžić and K. Sanković, Electron transfer in N-hydroxyurea complexes with iron(III), Eur. J. Med. Chem.40 (2005) 51--55; DOI: 10.1016/j.ejmech.2004.09.012.10.1016/j.ejmech.2004.09.01215642408
  60. N. Rapoport, J. N. Heron, W. G. Pitt and L. Pitina, Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound in the intracellular drug uptake, J. Control. Release58 (1999) 153--162; DOI: 10.1016/0168-3659(98)00149-7.
  61. V. Mišik and P. Riesz, Recent application of EPR and spin trapping to sonochemical studies of organic liquids and aqueous solutions, Ultrasonic Sonochem.3 (1996) 173--186; DOI: 10.1016/1350-4177(96)00023-5.
  62. V. Mišik and P. Riesz, EPR characterization of free radical intermediates formed during ultrasound exposure of cell culture media, Free Radical Biol. Med.26 (1999) 936--943; DOI: 10.1016/0891-5849(98)00282-2.
  63. T. Yu, J. Bai, K. Hu and Z. Wang, The effect of free radical scavenger and antioxidant on the increase in intracellular adriamycin accumulation induced by ultrasound, Ultrasonic Sonochem.10 (2003) 33--35; DOI: 10.1016/1359-4177(02)00105-0.
  64. C. X. Deng, F. Sieling, H. Pan and J. Cui, Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol.30 (2004) 519--526; DOI: 10.1016/j.ultramedbio.2004.01.005.
  65. P. H. Zhou, Y. Izadnegahdar, J. M. Cui and C. X. Deng, Study of sonoporation dynamics affected by ultrasound duty cycle, Ultrasound Med. Biol.31 (2005) 849--856; DOI: 10.1016/j.ultra medbio.2005.03.014.
  66. M. De Cuyper and M. Joniau, Magnetoliposomes: formation and structural characterization, Eur. Biophys. J.15 (1988) 311--319.
  67. A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch and R. Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magn. Magn. Mater.225 (2001) 118--126; DOI: 10.1016/0304-8853(01)01239-7.
  68. A. Jordan, P. Wust, R. Scholz, B. Tesche, H. Fahling, T. Mitrovics, T. Vogl, J. Cervos-Navarro and R. Felix, Cellular uptake of magnetic fluid particles and their effect on human adenocarcinoma cells exposed to AC magnetic fields in vitro, Int. J. Hyperther.12 (1996) 705--722; DOI: 10.1080/765134545521.
  69. M. Babincova, V. Altanerova, M. Lampert, C. Altaner, E. Machova, M. Sramka and P. Babinec, Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field, Z. Naturforsch55 (2000) 278--281; DOI: 10.1089/109662002760178159.10.1089/109662002760178159
  70. J. Q. Zhang, Z. R. Zhang, H. Yang, Q. Y. Tan, S. R. Qin and X. L. Qiu, Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parental administration: in vitro and in vivo studies, Pharm. Res.22 (2005) 573--583; DOI: 10.1007/s11095-005-2496-8.10.1007/s11095-005-2496-8
  71. M. Babincova, P. Cicmanec, V. Altanerova, C. Altaner and P. Babinec, AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy, Bioelectrochemistry55 (2002) 1--19; DOI: 10.1016/s1567-5394(01)00166-9.10.1016/S1567-5394(01)00166-9
  72. T. Kubo, T. Sugita, S. Shimose, Y. Niita, Y. Ikuta and T. Murakami, Targeted delivery of anticancer drugs with intravenously administrated magnetic liposomes in osteosarcoma-bearing hamsters, Int. J. Oncol.17 (2000) 309--315; DOI: 10.1111/j.1525-1438.2000.00168.
  73. M. Kullberg, K. Mann and J. L. Owens, Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors, Med. Hypotheses64 (2005) 468--470; DOI: 10.1016/j.mehy.2004.07.033.10.1016/j.mehy.2004.07.033
  74. K. Y. Ng, C. W. Cho, T. K. Henthorn and R. L. Tanguay, Effect of heat preconditioning on the uptake and permeability of R123 in brain microvessel endothelial cells during mild heat treatment, J. Pharm. Sci.93 (2004) 896--907; DOI: 10.1002/jps.20015.10.1002/jps.20015
  75. K. Trieb, A. Sztankay, A. Amberger, H. Lechner and B. Grubeckloebenstein, Hyperthermia inhibits profileration and stimulates the expression of differentiation markers in cultured thyroid carcinoma cells, Cancer Lett.87 (1994) 65--71; DOI: 10.1016/0304-3835(94)90410-3.10.1016/0304-3835(94)90410-3
  76. K. M. Sekins, D. B. Leeper, J. K. Hoffman, M. R. Wolfson and T. H. Shaffer, Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part I: Convective hyperthermia, Int. J. Hyperthermia20 (2004) 252--277; DOI: 10.1080/02656730310001605537.10.1080/0265673031000160553715204525
  77. B. Guo, L. Z. Xu and J. Li, Time reversal based microwave hyperthermia treatment of breast cancer, Microwave Opt. Techn. Lett.47 (2005) 335--338; DOI: 10.1002/mop.1378.10.1002/mop.1378
  78. S. Ahmed, B. Lindsey and J. Davies, Emerging minimally invasive techniques for treating localized prostate cancer, BJU Int.96 (2005) 1230--1234; DOI: 10.1111/j.1464-4100.2005.05742.
  79. H. Sakurai, K. Hayakawa, N. Mitsuhashi, Y. Tamaki, Y. Nakayama, H. Kurosaki, S. Nasu, H. Ishikawa, J. I. Saitoh, T. Akimoto and H. Niibe, Effect of hyperthermia combined with external radiation therapy in primary non-small cell lung cancer with direct bony invasion, Int. J. Hyperther.18 (2002) 472--483; DOI: 10.1080/02656730210146917.10.1080/0265673021014691712227932
  80. M. D. Sherar, J. Trachtenberg, S. R. H. Davidson, C. McCann, C. K. K. Yue, M. A. Haider and M. R. Gertner, Interstitial microwave thermal therapy for prostate cancer, J. Endourol.17 (2003) 617--625; DOI: 10.1111/j.1464-4100.2003.05848.
  81. P. R. Stauffer, Evolving technology for thermal therapy of cancer, Int. J. Hyperthermia21 (2005) 731--744; DOI: 10.1080/02656730500331868.10.1080/0265673050033186816338856
  82. I. Hilger, E. Dietmar, W. Linss, S. Streck and W. A. Kaiser, Developments for the minimally invasive treatment of tumors by targeted magnetic heating, J. Phys. Condens. Matt.18 (2006) 2951--2958; DOI: 10.1080/0953-8984/18/38/28.
  83. M. Johannsen, B. Thiesen, A. Jordan, K. Taymoorian, U. Gneveckow, N. Waldofner, R. Scholz, M. Koch, M. Lein, K. Jung and S. A. Loening, Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model, Prostate64 (2005) 283--292; DOI: 10.1002/pros.20213.10.1002/pros.2021315726645
  84. T. N. Brusentsova, N. A. Brusentsov, V. D. Kuznetsov and V. N. Nikiforov, Synthesis and investigation of magnetic properties of Gd-substituded Mn-Zn ferrite nanoparticles as a potential low-T-C agent for magnetic fluid hyperthermia, J. Magn. Magn. Mater.293 (2005) 298--302; DOI: 10.1016/j.jmmm.2005.02.023.10.1016/j.jmmm.2005.02.023
  85. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann and B. Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater.293 (2005) 483--496; DOI: 10.1016/j.jmmm.2005.01.064.10.1016/j.jmmm.2005.01.064
  86. S. Y. Yan, D. S. Zhang, N. Gu, J. Zheng, A. W. Ding, Z. Y. Wang, B. L. Ying, M. Ma and Y. Zhang, Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers, J. Nanosci. Nanotechnol.5 (2005) 1185--1192; DOI: 10.1116/jnn.2005.219.
  87. O. Dudeck, K. Bogusiewicz, J. Pinkernelle, G. Graffke, M. Pech, G. Wieners, H. Bruhn, A. Jordan and J. Ricke, Local arterial infusion of superparamagnetic iron oxide particles in hepatocellular carcinoma — feasibility and 3.0 T MRI study, Invest. Radiol.41 (2006) 527--535; DOI: 10.1097/01.rli.0000209601.15533.5a.10.1097/01.rli.0000209601.15533.5a16763472
  88. M. Johannsen, B. Thiesen, U. Gneveckow, K. Taymoorian, N. Waldofner, R. Scholz, S. Deger, K. Jung, S. A. Loening and A. Jordan, Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer, Prostate66 (2006) 97--104; DOI: 10.1002/pros.20316.10.1002/pros.20316273234716114062
  89. M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldofner, R. Scholz, S. Deger, P. Wust, S. A. Loening and A. Jordan, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, Int. J. Hyperther.21 (2005) 637--647; DOI: 10.1080/02656730500158360.10.1080/0265673050015836016304715
  90. M. Belehradek, C. Domenge, B. Luboinski, S. Orlowski, J. Belehradek and L. M. Mir, Electrochemotherapy, a new anti-tumor treatment: first clinical phase I-II trial report, Cancer72 (1993) 3694--3700; DOI: 10.1002/0305-7372(93)00073-2.
  91. J. Teissie and M. P. Rols, Time Course of Electropermeabilization, in Charge and Field Effects in Biosystems (Eds. M. J. Allen, S. F. Cleary, A. E. Sowers and D. Shillady), Vol. 3, Birkhauser, Boston 1992, pp. 285--301.10.1007/978-1-4615-9837-4_24
  92. A. Gothelf, L. M. Mir and J. Gehl, Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation, Cancer Treat. Rev.29 (2003) 371--387; DOI: 10.1016/0305-7372(03)00073-2.
  93. S. Orlowski, J. Belehradek, C. Paoletti and L. M. Mir, Transient electropermeabilization of cell in culture: increase of the cytotoxicity of anticancer drugs, Biochem. Pharmacol.37 (1988) 4727--4733.
  94. J. Gehl, T. Skovsgaard and L. M. Mir, Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs, Anti-cancer Drug9 (1998) 319--325.10.1097/00001813-199804000-000059635922
  95. M. J. Jaroszeski, R. Gilbert, R. Perrott and R. Heller, Enhanced effects of multiple treatment electrochemotherapy, Melanoma Res.6 (1999) 427--433; DOI: 10.1097/0305737203000732.
  96. C. Domenge, S. Orlowski, B. Luboinski, T. DeBaere, G. Schwaab, J. Belehradek and L. M. Mir, Antitumor electrochemotherapy, Cancer77 (1996) 956--963; DOI: 10.1002(SICI)1097-0142 (19960301) 77:5.
  97. O. Tounekti, G. Pron, J. Belehradek and L. M. Mir, Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized, Cancer Res.53 (1993) 5462--5469; DOI: 10.1158/5472(93)7693342.019.
  98. D. W. Jordan, M. D. Uhler, R. M. Gigenbach and Y. Y. Lau, Enhancement of cancer chemotherapy by intense ultrawideband electric field pulses, J. Appl. Phys.99 (2006) 94701--94706; DOI: 10.1063/1.2195421.10.1063/1.2195421
  99. C. M. Byrne, J. F. Thompson, H. Johnston, P. Hersey, M. J. Quinn, T. M. Hughes and W. H. McCarthy, Treatment of metastatic melanoma using electroporation therapy with bleomycin, Melanoma Res.15 (2005) 45--51; DOI: 10.1097/00008390-200502000-000008.
  100. G. Sersa, T. Cufer, M. Cemezar, M. Rebersek and R. Zvonimir, Electrochemotherapy with bleomycin in the treatment of hypernephroma metastasis, Tumori86 (2006) 163--165.
  101. J. Larkin, D. Soden, C. Collins, M. Tangney, J. M. Preston, L. J. Russell, A. P. McHale, C. Dunne and G. C. O'Sullivan, Combined electric field and ultrasound therapy as a novel antitumor treatment, Eur. J. Cancer41 (2005) 1339--1348; DOI: 10.1016/j.ejca.2005.01.025.10.1016/j.ejca.2005.01.02515913991
  102. A. M. R. Haro, A. Smyth, P. Hughes, C. N. Reid and A. P. McHale, Electro-sensitation of mammalian cells and tissues to ultrasound: a novel treatment modality, Cancer Lett.222 (2005) 49--55; DOI: 10.1016/j.canlet.2004.09.011.10.1016/j.canlet.2004.09.01115797626
  103. J. F. Kolb, S. Kono and K. H. Schoenbach, Nanosecond pulsed electric field generators for the study of subcellular effects, Bioelectromagn.27 (2006) 172--187; DOI: 10.1002/bem.20185.10.1002/bem.2018516304697
  104. R. Nuccitelli, U. Pliquett, X. H. Chen, W. Ford, R. J. Swanson, S. J. Beebe, J. F. Kolb and K. H. Schoenbach, Nanosecond pulsed electric fields cause melanomas to self-destruct, Biochem. Biophys. Res. Comm.343 (2006) 351--360; DOI: 10.1016/j.bbrc.2006.02.181.10.1016/j.bbrc.2006.02.181151354616545779
  105. R. Giardino, M. Fini, V. Bonazzi, R. Cadossi, A. Nicolini and A. Carpi, Electrochemotherapy, a novel approach to the treatment of metastatic nodules on the skin and subcutaneous tissues. Biomed. Pharmacother.60 (2006) 458--462; DOI: 10.1111/j.1600-0846.2006.00100.
DOI: https://doi.org/10.2478/v10007-007-0021-9 | Journal eISSN: 1846-9558 | Journal ISSN: 1330-0075
Language: English
Page range: 249 - 268
Published on: Sep 18, 2007
Published by: Croatian Pharmaceutical Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2007 Erim Bešić, published by Croatian Pharmaceutical Society
This work is licensed under the Creative Commons License.

Volume 57 (2007): Issue 3 (September 2007)