Have a personal or library account? Click to login
Customized crossover in evolutionary sets of safe ship trajectories Cover
Open Access
|Dec 2012

References

  1. Alba, E., Luna, F. and Nebro, A.J. (2004). Advances in parallel heterogeneous genetic algorithms for continuous optimisation, International Journal of Applied Mathematics and Computer Science 14(3): 317-333.
  2. Belter, D. and Skrzypczyn´ski, P. (2010). A biologically inspired approach to feasible gait learning for a hexapod robot, International Journal of Applied Mathematics and Computer Science 20(1): 69-84, DOI: 10.2478/v10006-010-0005-7.10.2478/v10006-010-0005-7
  3. Beyera, H., Schwefela, H. and Wegenerb, I. (2002). How to analyse evolutionary algorithms, Theoretical Computer Science 287(1): 101-130.10.1016/S0304-3975(02)00137-8
  4. Cockroft, A. and Lameijer, J. (1993). A Guide to Collision Avoidance Rules, Butterworth-Heinemann Ltd., Oxford.
  5. Eiben, A. and Schoenauer, M. (2002). Evolutionary computing, Information Processing Letters 82(1): 1-6.10.1016/S0020-0190(02)00204-1
  6. Jόźwiak, L. and Postula, A. (2002). Genetic engineering versus natural evolution: Genetic algorithms with deterministic operators, Journal of Systems Architecture 48(1-3): 99-112.10.1016/S1383-7621(02)00094-2
  7. Julstrom, B.A. (2004). Codings and operators in two genetic algorithms for the leaf-constrained minimum spanning tree problem, International Journal of Applied Mathematics and Computer Science 14(3): 385-396.
  8. Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84.
  9. Krawiec, K., Jaskowski, W. and Szubert, M. (2011). Evolving small-board Go players using coevolutionary temporal difference learning with archives, International Journal of Applied Mathematics and Computer Science 21(4): 717-731, DOI: 10.2478/v10006-011-0057-3.10.2478/v10006-011-0057-3
  10. Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science 14(1): 91-103.
  11. Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern Heuristics, Springer-Verlag, Berlin.10.1007/978-3-662-07807-5
  12. Miquélez, T., Bengoetxea, E. and Larran˜aga, P. (2004). Evolutionary computation based on Bayesian classifiers, International Journal of Applied Mathematics and Computer Science 14(3): 335-349.
  13. Pradhan, S., Parhi, D., Panda, A. and Behera, R. (2006). Potential field method to navigate several mobile robots, Applied Intelligence 25(1): 321-333.10.1007/s10489-006-0110-3
  14. Śmierzchalski, R. and Michalewicz, Z. (2000). Modeling of a ship trajectory in collision situations at sea by evolutionary algorithm, IEEE Transactions on Evolutionary Computation 4(3): 227-241.10.1109/4235.873234
  15. Styrcz, A., Mrozek, J. and Mazur, G. (2011). A neural-network controlled dynamic evolutionary scheme for global molecular geometry optimization, International Journal of Applied Mathematics and Computer Science 21(3): 559-566, DOI: 10.2478/v10006-011-0044-8.10.2478/v10006-011-0044-8
  16. Szłapczyńska, J. (2012). Multicriteria weather routing algorithm (MEWRA) applied to marine weather forecast and analysis tool-NaviWeather by NavSimTM, European Navigational Conference (ENC), Gdynia, Poland, (submitted).
  17. Szłapczyńska, R. (2006). A unified measure of collision risk derived from the concept of a ship domain, The Journal of Navigation 59(3): 477-490.10.1017/S0373463306003833
  18. Szłapczyńska, R. (2011). Evolutionary sets of safe ship trajectories: A new approach to collision avoidance, The Journal of Navigation 64(1): 169-181.10.1017/S0373463310000238
  19. Szłapczyńska, R. and Szłapczyn´ska, J. (2011). Evolutionary sets of safe ship trajectories: Problem dedicated operators, in P. J e¸drzejowicz, N.T. Nguyen and K. Hoang (Eds.), Computational Collective Intelligence: Technologies and Applications, Part II, Lecture Notes in Artificial Intelligence, Vol. 6923, Springer-Verlag, Berlin/Heidelberg, pp. 231-240.10.1007/978-3-642-23938-0_23
  20. Troć, M. and Unold, O. (2010). Self-adaptation of parameters in a learning classifier system ensemble machine, International Journal of Applied Mathematics and Computer Science 20(1): 157-174, DOI: 10.2478/v10006-010-0012-8.10.2478/v10006-010-0012-8
  21. Tsou, M.C. and Hsueh, C.K. (2010). The study of ship collision avoidance route planning by ant colony algorithm, Journal of Marine Science and Technology 18(5): 746-756.10.51400/2709-6998.1929
  22. Tsou, M.C., Kao, S.L. and Su, C.M. (2010). Decision support from genetic algorithms for ship collision avoidance route planning and alerts, The Journal of Navigation 63(1): 167-182.10.1017/S037346330999021X
  23. Xue, Y., Lee, B. and Han, D. (2009). Automatic collision avoidance of ships, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 223(1): 33-46.10.1243/14750902JEME123
  24. Zeng, X. (2003). Evolution of the safe path for ship navigation, Applied Artificial Intelligence 17(2): 87-104.10.1080/713827101
DOI: https://doi.org/10.2478/v10006-012-0074-x | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 999 - 1009
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Rafał Szłapczynśki, Joanna Szłapczyńska, published by Sciendo
This work is licensed under the Creative Commons License.