Alba, E. and Tomassini, M. (2002). Parallelism and evolutionary algorithms, IEEE Transactions on Evolutionary Computation 6(5): 443-462.10.1109/TEVC.2002.800880
Aparicio, J., Correia, L. and Moura-Pires, F. (1999). Populations are multisets-plato, in W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela and R.E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 13-17 July 1999, Vol. 2, Morgan Kaufmann, San Francisco, CA, pp. 1845-1850.
Bäck, T., Fogel, D. and Michalewicz, Z. (2000). Evolutionary Computation: Basic Algorithms and Operators, Vols. 1 and 2, Institute of Physics Publishing, Bristol/Philadelphia, PA .
Back, T., Hammel, U. and Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current state, IEEE Transactions on Evolutionary Computation 1(1): 3-17.10.1109/4235.585888
Buckley, F., Nicol, S. and Pollett, P. (2010). Preface to the selected papers on modeling and control of metapopulation networks, Ecological Modeling 221(21): 2512-2514.10.1016/j.ecolmodel.2010.05.017
Byrski, A. and Schaefer, R. (2009). Stochastic model of evolutionary and immunological multi-agent systems: Mutually exclusive actions, Fundamenta Informaticae 95(2-3): 263-285.10.3233/FI-2009-150
Davis, T.E. and Principe, J.C. (1991). A simulated annealing like convergence theory for the simple genetic algorithm, Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, USA, pp. 174-181.
Droste, S., Jansen, T. and Wegener, I. (1998a). On the optimization of unimodal functions with the (1+1) evolutionary algorithm, Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, pp. 13-22.10.1007/BFb0056845
Droste, S., Jansen, T. and Wegener, I. (1998b). A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs, Evolutionary Computation 6(2): 185-196.10.1162/evco.1998.6.2.18510021746
Gajda, E., Schaefer, R. and Smołka, M. (2010). Evolutionary multiobjective optimization algorithm as a Markov system, Proceedings of the 11th International Conference on Parallel Problem Solving from Nature, PPSN XI, Krako´ w, Poland, pp. 617-626.
Goldberg, D.E. and Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms, Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, Cambridge, MA, USA, pp. 1-8.
Gordon, V., Whitley, D. and Bohn, A. (1992). Data flow parallelism in genetic algorithms, in R. Manner and B. Manderick (Eds.), Parallel Problem Solving from Nature 2, Elsevier Science, Amsterdam, pp. 553-542.
Grochowski, M., Schaefer, R. and Uhruski, P. (2004). Diffusion based scheduling in the agent-oriented computing systems, in R. Wyrzykowski, J. Dongarra, M. Paprzycki and J. Wa s´ niewski (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 3019, Springer, Berlin/Heidelberg, pp. 97-104.10.1007/978-3-540-24669-5_13
Harik, G., Cantú-Paz, E., Goldberg, D.E. and Miller, B.L. (1999). The gambler’s ruin problem, genetic algorithms, and the sizing of populations, Evolutionary Computation 7(3): 251-253.10.1162/evco.1999.7.3.23110491464
Hewitt, C., Bishop, P. and Steiger, R. (1973). A universal modular ACTOR formalism for artificial intelligence, Proceedings of the 3rd International Joint Conference on Artificial Intelligence, Stanford, CA, USA, pp. 235-245.
Horn, J. (1993). Finite Markov chain analysis of genetic algorithms with niching, Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, pp. 110-117.
Kołodziej, J. and Xhafa, F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids, International Journal of Applied Mathematics and Computer Science 21(2) 243-257, DOI: 10.2478/v10006-011-0018-x.10.2478/v10006-011-0018-x
Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84.
Lässig, J. and Sudholt, D. (2010). General scheme for analyzing running times of parallel evolutionary algorithms, in R. Schaefer, C. Cotta, J. Kołodziej and G. Rudolph (Eds.), Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I, Springer-Verlag, pp. 234-243.10.1007/978-3-642-15844-5_24
Li, C. and Yang, S. (2008). An island based hybrid evolutionary algorithm for optimization, in X. Li, M. Kirley, M. Zhang, D.G. Green, V. Ciesielski, H.A. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K.C. Tan, J. Branke and Y. Shi (Eds.), SEAL, Lecture Notes in Computer Science, Vol. 5361, Springer, Berlin/Heidelberg, pp. 180-189.10.1007/978-3-540-89694-4_19
Manderick, B. and Spiessens, P. (1989). Fine-grained parallel genetic algorithms, in J. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kauffman, San Francisco, CA, p. 428.
Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science 14(1): 91-103.
Milner, R. (1990). Functions as processes, in M. Paterson (Ed.), Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 443, Springer, Berlin/Heidelberg, pp. 167-180.10.1007/BFb0032030
Mühlenbein, H. (1989). Parallel genetic algorithms, population genetic and combinatorial optimization, in J. Schaffer, (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kauffman, San Francisco, CA, pp. 416-421.
Mühlenbein, H. (1992). How genetic algorithms really work: Mutation and hillclimbing, in R. Ma¨nner and B. Manderick (Eds.), Proceedings of PPSN ’92, Elsevier, Amsterdam, pp. 15-26.
Nix, A.E. and Vose, M.D. (1992). Modeling genetic algorithms with Markov chains, Annals of Mathematics and Artificial Intelligence 5(1): 79-88.10.1007/BF01530781
Paredis, J. (1998). Coevolutionary algorithms, in T. Back, D. Fogel and Z. Michalewicz (Eds.), Handbook of Evolutionary Computation, 1st Suppl., IOP Publishing/Oxford University Press, Bristol/Oxford.
Potter, M.A. and De Jong, K.A. (2000). Cooperative coevolution: An architecture for evolving coadapted subcomponents, Evolutionary Computation 8(1): 1-29.10.1162/10636560056808610753229
Rudolph, G. (1994). Massively parallel simulated annealing and its relation to evolutionary algorithms, Evolutionary Computation 1(4): 361-383.10.1162/evco.1993.1.4.361
Rudolph, G. (1997). Stochastic processes (Chapter B.2.2), Models of stochastic convergence (Chapter B.2.3), in T. Ba¨ck, D.B. Fogel and Z. Michalewicz (Eds.), Handbook of Evolutionary Computations, Oxford University Press, Oxford.
Rudolph, G. (2006). Takeover time in parallel populations with migration, Proceedings of the 2nd International Conference on Bioinspired Optimization Methods and Their Applications (BIOMA 2006), Ljubljana, Slovenia, pp. 63-72.
Schaefer, R., Byrski, A., Kołodziej, J. and Smołka, M. (2012). An agent-based model of hierarchic genetic search, Computers and Mathematics with Applications, DOI: 10.1016/j.camwa.2012.02.052, (accepted).10.1016/j.camwa.2012.02.052
Schaefer, R., Byrski, A. and Smołka, M. (2009). Stochastic model of evolutionary and immunological multi-agent systems: Parallel execution of local actions, Fundamenta Informaticae 95(2-3): 325-348.10.3233/FI-2009-153
Schaefer, R. and Telega, H. (2007). Foundation of Global Genetic Optimization, Studies in Computational Intelligence, Vol. 74, Springer Verlag, Berlin/Heidelberg/New York, NY.
Skolicki, Z. and de Jong, K. (2004). Improving evolutionary algorithms with multi-representation island models, 8th International Conference on Parallel Problem Solving from Nature, PPSN, Birmingham, UK, pp. 420-429.
Suzuki, J. (1993). A Markov Chain Analysis on a Genetic Algorithm, in S. Forrest (Ed.), Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, June 1993, Morgan Kaufmann, San Francisco, CA, pp. 146-154.
Terzo, O. Mossucca, L., Cucca, M. and Notarpietro R. (2011). Data intensive scientific analysis with grid computing, International Journal of Applied Mathematics and Computer Science 21(2): 219-228, DOI: 10.2478/v10006-011-0016-z.10.2478/v10006-011-0016-z
Tomassini, M. (2005). Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time, Natural Computing Series, Springer, Berlin/Heidelberg.
Whitley, D. (1992). An executable model of a simple genetic algorithm, in L.D. Whitley (Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, San Francisco, CA, pp. 45-62.
Whitley, W.D., Rana, S.B. and Heckendorn, R.B. (1997). Island model genetic algorithms and linearly separable problems, in D. Corne and J.L. Shapiro (Eds.), Selected Papers from the AISB Workshop on Evolutionary Computing, Springer-Verlag, London, pp. 109-125.10.1007/BFb0027170
Wolpert, D.H. and Macready, W.G. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1(1): 67-82.10.1109/4235.585893
Wood, G.R. and Zabinsky, Z.B. (2002). Stochastic adaptive search, in P.M. Pardalos and H.E. Romeijn (Eds.), Handbook of Global Optimization, Vol. 2, Kluwer, Norwell, MA.10.1007/978-1-4757-5362-2_7