Have a personal or library account? Click to login
The island model as a Markov dynamic system Cover

References

  1. Alba, E. and Tomassini, M. (2002). Parallelism and evolutionary algorithms, IEEE Transactions on Evolutionary Computation 6(5): 443-462.10.1109/TEVC.2002.800880
  2. Aparicio, J., Correia, L. and Moura-Pires, F. (1999). Populations are multisets-plato, in W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela and R.E. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 13-17 July 1999, Vol. 2, Morgan Kaufmann, San Francisco, CA, pp. 1845-1850.
  3. Bäck, T., Fogel, D. and Michalewicz, Z. (2000). Evolutionary Computation: Basic Algorithms and Operators, Vols. 1 and 2, Institute of Physics Publishing, Bristol/Philadelphia, PA .
  4. Back, T., Hammel, U. and Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current state, IEEE Transactions on Evolutionary Computation 1(1): 3-17.10.1109/4235.585888
  5. Billingsley, P. (1995). Probability and Measure, Wiley-Interscience, Hoboken, NJ.
  6. Brabazon, A. and O’Neill, M. (2006). Biologically Inspired Algorithms for Financial Modeling, Springer Verlag, Berlin/Heidelberg.
  7. Buckley, F., Nicol, S. and Pollett, P. (2010). Preface to the selected papers on modeling and control of metapopulation networks, Ecological Modeling 221(21): 2512-2514.10.1016/j.ecolmodel.2010.05.017
  8. Byrski, A. and Schaefer, R. (2009). Stochastic model of evolutionary and immunological multi-agent systems: Mutually exclusive actions, Fundamenta Informaticae 95(2-3): 263-285.10.3233/FI-2009-150
  9. Cantú-Paz, E. (1995). A summary of research on parallel genetic algorithms, IlliGAL Report No. 95007, University of Illinois, Chicago, IL.
  10. Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers, Norwell, MA.10.1007/978-1-4615-4369-5
  11. Davis, T.E. and Principe, J.C. (1991). A simulated annealing like convergence theory for the simple genetic algorithm, Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, CA, USA, pp. 174-181.
  12. Diekert, V. and Rozenberg, G. (1995). The Book of Traces, World Scientific, Singapore.10.1142/2563
  13. Droste, S., Jansen, T. and Wegener, I. (1998a). On the optimization of unimodal functions with the (1+1) evolutionary algorithm, Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, pp. 13-22.10.1007/BFb0056845
  14. Droste, S., Jansen, T. and Wegener, I. (1998b). A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with Boolean inputs, Evolutionary Computation 6(2): 185-196.10.1162/evco.1998.6.2.18510021746
  15. Gajda, E., Schaefer, R. and Smołka, M. (2010). Evolutionary multiobjective optimization algorithm as a Markov system, Proceedings of the 11th International Conference on Parallel Problem Solving from Nature, PPSN XI, Krako´ w, Poland, pp. 617-626.
  16. Goldberg, D.E. and Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms, Proceedings of the 2nd International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, Cambridge, MA, USA, pp. 1-8.
  17. Gordon, V., Whitley, D. and Bohn, A. (1992). Data flow parallelism in genetic algorithms, in R. Manner and B. Manderick (Eds.), Parallel Problem Solving from Nature 2, Elsevier Science, Amsterdam, pp. 553-542.
  18. Grochowski, M., Schaefer, R. and Uhruski, P. (2004). Diffusion based scheduling in the agent-oriented computing systems, in R. Wyrzykowski, J. Dongarra, M. Paprzycki and J. Wa s´ niewski (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 3019, Springer, Berlin/Heidelberg, pp. 97-104.10.1007/978-3-540-24669-5_13
  19. Harik, G., Cantú-Paz, E., Goldberg, D.E. and Miller, B.L. (1999). The gambler’s ruin problem, genetic algorithms, and the sizing of populations, Evolutionary Computation 7(3): 251-253.10.1162/evco.1999.7.3.23110491464
  20. Hennessy, M. (1988). Algebraic Theory of Processes, The MIT Press, Cambridge, MA.
  21. Hewitt, C., Bishop, P. and Steiger, R. (1973). A universal modular ACTOR formalism for artificial intelligence, Proceedings of the 3rd International Joint Conference on Artificial Intelligence, Stanford, CA, USA, pp. 235-245.
  22. Horn, J. (1993). Finite Markov chain analysis of genetic algorithms with niching, Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, pp. 110-117.
  23. Horst, R. and Pardalos, P. (1995). Handbook of Global Optimization, Kluwer, Norwell, MA.10.1007/978-1-4615-2025-2
  24. Iosifescu, M. (1980). Finite Markov Processes and Their Applications, John Wiley & Sons, Alphen aan den Rijn.
  25. Kołodziej, J. and Xhafa, F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids, International Journal of Applied Mathematics and Computer Science 21(2) 243-257, DOI: 10.2478/v10006-011-0018-x.10.2478/v10006-011-0018-x
  26. Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84.
  27. Kushner, H. (1971). Introduction to Stochastic Control, Rinehart and Winston, Holt.
  28. Lässig, J. and Sudholt, D. (2010). General scheme for analyzing running times of parallel evolutionary algorithms, in R. Schaefer, C. Cotta, J. Kołodziej and G. Rudolph (Eds.), Proceedings of the 11th International Conference on Parallel Problem Solving from Nature: Part I, Springer-Verlag, pp. 234-243.10.1007/978-3-642-15844-5_24
  29. Li, C. and Yang, S. (2008). An island based hybrid evolutionary algorithm for optimization, in X. Li, M. Kirley, M. Zhang, D.G. Green, V. Ciesielski, H.A. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K.C. Tan, J. Branke and Y. Shi (Eds.), SEAL, Lecture Notes in Computer Science, Vol. 5361, Springer, Berlin/Heidelberg, pp. 180-189.10.1007/978-3-540-89694-4_19
  30. Liekens, A. (2005). Evolution of Finite Populations in Dynamic Environments, Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven.
  31. Mahfoud, S. (1991). Finite Markov chain models of an alternative selection strategy for the genetic algorithm, Complex Systems 7(2): 155-170.
  32. Manderick, B. and Spiessens, P. (1989). Fine-grained parallel genetic algorithms, in J. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kauffman, San Francisco, CA, p. 428.
  33. Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science 14(1): 91-103.
  34. Milner, R. (1990). Functions as processes, in M. Paterson (Ed.), Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 443, Springer, Berlin/Heidelberg, pp. 167-180.10.1007/BFb0032030
  35. Mühlenbein, H. (1989). Parallel genetic algorithms, population genetic and combinatorial optimization, in J. Schaffer, (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kauffman, San Francisco, CA, pp. 416-421.
  36. Mühlenbein, H. (1992). How genetic algorithms really work: Mutation and hillclimbing, in R. Ma¨nner and B. Manderick (Eds.), Proceedings of PPSN ’92, Elsevier, Amsterdam, pp. 15-26.
  37. Nagylaki, T. (1979). The island model with stochastic migration, Genetics 91(1): 163-76.10.1093/genetics/91.1.163121392817248880
  38. Nix, A.E. and Vose, M.D. (1992). Modeling genetic algorithms with Markov chains, Annals of Mathematics and Artificial Intelligence 5(1): 79-88.10.1007/BF01530781
  39. Paredis, J. (1998). Coevolutionary algorithms, in T. Back, D. Fogel and Z. Michalewicz (Eds.), Handbook of Evolutionary Computation, 1st Suppl., IOP Publishing/Oxford University Press, Bristol/Oxford.
  40. Peterson, J.L. (1981). Petri Net Theory and the Modeling of Systems, Prentice Hall, Upper Saddle River, NJ.
  41. Potter, M.A. and De Jong, K.A. (2000). Cooperative coevolution: An architecture for evolving coadapted subcomponents, Evolutionary Computation 8(1): 1-29.10.1162/10636560056808610753229
  42. Rinnoy Kan, A. and Timmer, G. (1987). Stochastic global optimization methods, Mathematical Programming 39: 27-56.10.1007/BF02592070
  43. Rudolph, G. (1994). Massively parallel simulated annealing and its relation to evolutionary algorithms, Evolutionary Computation 1(4): 361-383.10.1162/evco.1993.1.4.361
  44. Rudolph, G. (1997). Stochastic processes (Chapter B.2.2), Models of stochastic convergence (Chapter B.2.3), in T. Ba¨ck, D.B. Fogel and Z. Michalewicz (Eds.), Handbook of Evolutionary Computations, Oxford University Press, Oxford.
  45. Rudolph, G. (2006). Takeover time in parallel populations with migration, Proceedings of the 2nd International Conference on Bioinspired Optimization Methods and Their Applications (BIOMA 2006), Ljubljana, Slovenia, pp. 63-72.
  46. Schaefer, R., Byrski, A., Kołodziej, J. and Smołka, M. (2012). An agent-based model of hierarchic genetic search, Computers and Mathematics with Applications, DOI: 10.1016/j.camwa.2012.02.052, (accepted).10.1016/j.camwa.2012.02.052
  47. Schaefer, R., Byrski, A. and Smołka, M. (2009). Stochastic model of evolutionary and immunological multi-agent systems: Parallel execution of local actions, Fundamenta Informaticae 95(2-3): 325-348.10.3233/FI-2009-153
  48. Schaefer, R. and Telega, H. (2007). Foundation of Global Genetic Optimization, Studies in Computational Intelligence, Vol. 74, Springer Verlag, Berlin/Heidelberg/New York, NY.
  49. Schmitt, L.M. (2001). Theory of genetic algorithm, Theoretical Computer Science 259(1): 1-61.10.1016/S0304-3975(00)00406-0
  50. Skolicki, Z. (2007). An Analysis of Island Models In Evolutionary Computation, Ph.D. thesis, George Mason University, Fairfax, VA.
  51. Skolicki, Z. and de Jong, K. (2004). Improving evolutionary algorithms with multi-representation island models, 8th International Conference on Parallel Problem Solving from Nature, PPSN, Birmingham, UK, pp. 420-429.
  52. Suzuki, J. (1993). A Markov Chain Analysis on a Genetic Algorithm, in S. Forrest (Ed.), Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, June 1993, Morgan Kaufmann, San Francisco, CA, pp. 146-154.
  53. Terzo, O. Mossucca, L., Cucca, M. and Notarpietro R. (2011). Data intensive scientific analysis with grid computing, International Journal of Applied Mathematics and Computer Science 21(2): 219-228, DOI: 10.2478/v10006-011-0016-z.10.2478/v10006-011-0016-z
  54. Tomassini, M. (2005). Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time, Natural Computing Series, Springer, Berlin/Heidelberg.
  55. Vose, M. (1998). The Simple Genetic Algorithm: Foundations and Theory, MIT Press, Cambridge, MA.10.7551/mitpress/6229.001.0001
  56. Vose, M. and Liepins, G. (1991). Punctuated equilibria in genetic search, Complex Systems 5: 31-44.
  57. Whitley, D. (1992). An executable model of a simple genetic algorithm, in L.D. Whitley (Ed.), Foundations of Genetic Algorithms 2, Morgan Kaufmann, San Francisco, CA, pp. 45-62.
  58. Whitley, W.D., Rana, S.B. and Heckendorn, R.B. (1997). Island model genetic algorithms and linearly separable problems, in D. Corne and J.L. Shapiro (Eds.), Selected Papers from the AISB Workshop on Evolutionary Computing, Springer-Verlag, London, pp. 109-125.10.1007/BFb0027170
  59. Wolpert, D.H. and Macready, W.G. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1(1): 67-82.10.1109/4235.585893
  60. Wood, G.R. and Zabinsky, Z.B. (2002). Stochastic adaptive search, in P.M. Pardalos and H.E. Romeijn (Eds.), Handbook of Global Optimization, Vol. 2, Kluwer, Norwell, MA.10.1007/978-1-4757-5362-2_7
DOI: https://doi.org/10.2478/v10006-012-0072-z | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 971 - 984
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Robert Schaefer, Aleksander Byrski, Maciej Smołka, published by Sciendo
This work is licensed under the Creative Commons License.