Alpcan, T. and Pavel, L. (2009). Nash equilibrium design and optimization, International Conference on Game Theory for Networks, GameNets’ 09, Istanbul, Turkey, pp. 164-170.
Basar, T. and Olsder, G. J. (1999). Dynamic Noncooperative Game Theory, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, PA.10.1137/1.9781611971132
Bertsekas, D. and Ozdaglar, A. (2002). Pseudonormality and a Lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications 114(2): 287-343.10.1023/A:1016083601322
Clempner, J.B. and Poznyak, A.S. (2011). Convergence method, properties and computational complexity for Lyapunov games, International Journal of Applied Mathematics and Computer Science 21(2): 349-361, DOI: 10.2478/v10006-011-0026-x.10.2478/v10006-011-0026-x
Findeisen, W. (1968). Parametric optimization by primal method in multilevel systems, IEEE Transactions on Systems Science and Cybernetics 4(2): 155-164.10.1109/TSSC.1968.300143
Findeisen, W., Bailey, F.N., Brdys´, M., Malinowski, K., Tatjewski, P. and Woz´niak, A. (1980). Control and Coordination in Hierarchical Systems, John Wiley & Sons, New York, NY.
Findeisen, W., Brdys´, M., Malinowski, K., Tatjewski, P. and Wo z´ niak, A. (1978). On-line hierarchical control for steady-state systems, IEEE Transactions on Automatic Control 23(2): 189-209.10.1109/TAC.1978.1101702
Groves, T., Radner, R. and Reiter, S. (Eds.) (1987). Information, Incentives, and Economic Mechanisms: Essays in Honor of Leonid Hurwicz, University of Minnesota Press, Mineapolis, MN.
Hurwicz, L. (1977). On Informationally Decentralized Systems, Studies in Resource Allocation Processes, Cambridge University Press, New York, NY, Chapter 4, pp. 425-459.
Hurwicz, L., Maskin, E. and Postlewaite, A. (1995). Feasible implementation of social choice correspondences by Nash equilibria, in J.O. Ledyard (Ed.), Essays in Honor of Stanley Reiter, Kluwer Academic Publishers, Norwell, MA, pp. 367-433.
Hurwicz, L. and Walker, M. (1990). On the generic nonoptimality of dominant-strategy allocation mechanisms: A general theorem that includes pure exchange economies, Econometrica 58(3): 683-704.10.2307/2938196
Jin, C., Wei, D., Low, S., Bunn, J., Choe, H., Doylle, J., Newman, H., Ravot, S., Singh, S. and Paganini, F. (2005). FAST TCP: From theory to experiments, IEEE Network 19(1): 4-11.10.1109/MNET.2005.1383434
Jofré, A., Rockafellar, R. and Wets, R. (2007). Variational inequalities and economic equilibrium, Mathematics of Operations Research 32(1): 32.10.1287/moor.1060.0233
Johari, R., Mannor, S. and Tsitsiklis, J.N. (2005). Efficiency loss in a network resource allocation game: The case of elastic supply, IEEE Transactions on Automatic Control 50(11): 1712-1724.10.1109/TAC.2005.858687
Johari, R. and Tsitsiklis, J.N. (2004). Efficiency loss in a network resource allocation game, Mathematics of Operation Research 29(3): 407-435.10.1287/moor.1040.0091
Kelly, F.P., Maulloo, A.K. and Tan, D.K. (1998). Rate control for communication networks: Shadow prices, proportional fairness, and stability, Journal of the Operational Research Society 49(3): 237-252.10.1057/palgrave.jors.2600523
Kołodziej, J. and Xhafa, F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids, International Journal of Applied Mathematics and Computer Science 21(2): 243-257, DOI: 10.2478/v10006-011-0018-x.10.2478/v10006-011-0018-x
Low, S., Paganini, F., Wang, J. and Doyle, J. (2003). Linear stability of TCP/RED and a scalable control, Computer Networks 43(5): 633-647.10.1016/S1389-1286(03)00304-9
Maheswaran, R. and Basar, T. (2004). Social welfare of selfish agents: Motivating efficiency for divisible resources, Proceedings of the 43rd IEEE Conference on Decision and Control, The Bahamas.10.1109/CDC.2004.1430264
Malinowski, K. (2002). Optimization network flow control and price coordination with feedback: Proposal of a new distributed algorithm, Computer Communications 25(11-12): 1028-1036.10.1016/S0140-3664(02)00017-8
Negishi, T. (1960). Welfare economics and existence of an equilibrium for a competitive economy, Metroeconomica 12(2-3): 92-97.10.1111/j.1467-999X.1960.tb00275.x
Ogryczak, W., Pióro, M. and Tomaszewski, A. (2005). Telecommunications network design and max-min optimization problem, Journal of Telecommunications and Information Technology 3: 43-56.
Ogryczak, W., Wierzbicki, A. and Milewski, M. (2008). A multi-criteria approach to fair and efficient bandwidth allocation, Omega 36(3): 451-463.10.1016/j.omega.2005.12.005
Pióro, M. and Medhi, D. (2004). Routing, Flow, and Capacity Design in Communication and Computer Networks, Morgan Kaufmann, San Francisco, CA.10.1016/B978-012557189-0/50011-1
Rockafellar, R.T. and Wets, R.J.-B. (2004). Variational Analysis, A Series of Comprehensive Studies in Mathematics, Vol. 317, Springer-Verlag, Berlin/Heidelberg.
Rotschild, M. and Stiglitz, J. (1976). Equilibrium in competitive insurance markets: An essay on the economics of imperfect information, Quarterly Journal of Economics 90(4): 630-649.10.2307/1885326
Stiglitz, J. (2000). The contributions of the economics of information to twentieth century economics, The Quarterly Journal of Economics 115(4): 1441-1478.10.1162/003355300555015
Wierzbicki, A. P., Makowski, M. and Wessels, J. (2001). ModelBased Decision Support Methodology with Environmental Applications, Kluwer Academic Publishers, Dordrecht.10.1007/978-94-015-9552-0
Yang, S. and Hajek, B. (2005). Revenue and stability of a mechanism for efficient allocation of a divisible good, Mimeo, University of Illinois, Urbana-Champaign, IL.
Yang, S. and Hajek, B. (2007). VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional signals, IEEE Journal on Selected Areas in Communications 25(6): 1237-1243.10.1109/JSAC.2007.070817