Have a personal or library account? Click to login
Nash equilibrium design and price-based coordination in hierarchical systems Cover

Nash equilibrium design and price-based coordination in hierarchical systems

Open Access
|Dec 2012

References

  1. Alpcan, T. and Pavel, L. (2009). Nash equilibrium design and optimization, International Conference on Game Theory for Networks, GameNets’ 09, Istanbul, Turkey, pp. 164-170.
  2. Alpcan, T., Pavel, L. and Stefanovic, N. (2010). An optimization and control theoretic approach to noncooperative game design, arXiv:1007.0144.
  3. Arrow, K.J. and Hurwicz, L. (1977). Studies in Resource Allocation Processes, Cambridge University Press, New York, NY.10.1017/CBO9780511752940
  4. Basar, T. and Olsder, G. J. (1999). Dynamic Noncooperative Game Theory, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, PA.10.1137/1.9781611971132
  5. Bertsekas, D. and Ozdaglar, A. (2002). Pseudonormality and a Lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications 114(2): 287-343.10.1023/A:1016083601322
  6. Chao, H. and Guo, X. (2002). Quality of Service Control in High-Speed Networks, John Wiley & Sons, New York, NY.10.1002/0471224391
  7. Clempner, J.B. and Poznyak, A.S. (2011). Convergence method, properties and computational complexity for Lyapunov games, International Journal of Applied Mathematics and Computer Science 21(2): 349-361, DOI: 10.2478/v10006-011-0026-x.10.2478/v10006-011-0026-x
  8. Cramton, P. (1997). The FCC spectrum auctions: An early assessment, Journal of Economics and Management Strategy 6(3): 431-495.10.1162/105864097567165
  9. Fiacco, A.V. and McCormick, G.P. (1990). Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM Classics in Applied Mathematics, SIAM, Philadelphia, PA.10.1137/1.9781611971316
  10. Findeisen, W. (1968). Parametric optimization by primal method in multilevel systems, IEEE Transactions on Systems Science and Cybernetics 4(2): 155-164.10.1109/TSSC.1968.300143
  11. Findeisen, W., Bailey, F.N., Brdys´, M., Malinowski, K., Tatjewski, P. and Woz´niak, A. (1980). Control and Coordination in Hierarchical Systems, John Wiley & Sons, New York, NY.
  12. Findeisen, W., Brdys´, M., Malinowski, K., Tatjewski, P. and Wo z´ niak, A. (1978). On-line hierarchical control for steady-state systems, IEEE Transactions on Automatic Control 23(2): 189-209.10.1109/TAC.1978.1101702
  13. Fudenberg, D. and Tirole, J. (1991). Game Theory, The MIT Press, Cambridge, MA.
  14. Green, J.R. and Laffont, J.-J. (1979). Incentives in Public Decision-making, North-Holland Publishing Company, Amsterdam.
  15. Grossman, S.J. and Stiglitz, J. (1980). On the impossibility of informationally efficient markets, American Economic Review 70(3): 393-408.
  16. Groves, T., Radner, R. and Reiter, S. (Eds.) (1987). Information, Incentives, and Economic Mechanisms: Essays in Honor of Leonid Hurwicz, University of Minnesota Press, Mineapolis, MN.
  17. Hurwicz, L. (1977). On Informationally Decentralized Systems, Studies in Resource Allocation Processes, Cambridge University Press, New York, NY, Chapter 4, pp. 425-459.
  18. Hurwicz, L. (1979). On allocations attainable through Nash equilibria, Journal of Economic Theory 21(1): 140-165.10.1016/0022-0531(79)90010-3
  19. Hurwicz, L., Maskin, E. and Postlewaite, A. (1995). Feasible implementation of social choice correspondences by Nash equilibria, in J.O. Ledyard (Ed.), Essays in Honor of Stanley Reiter, Kluwer Academic Publishers, Norwell, MA, pp. 367-433.
  20. Hurwicz, L. and Walker, M. (1990). On the generic nonoptimality of dominant-strategy allocation mechanisms: A general theorem that includes pure exchange economies, Econometrica 58(3): 683-704.10.2307/2938196
  21. Jin, C., Wei, D., Low, S., Bunn, J., Choe, H., Doylle, J., Newman, H., Ravot, S., Singh, S. and Paganini, F. (2005). FAST TCP: From theory to experiments, IEEE Network 19(1): 4-11.10.1109/MNET.2005.1383434
  22. Jofré, A., Rockafellar, R. and Wets, R. (2007). Variational inequalities and economic equilibrium, Mathematics of Operations Research 32(1): 32.10.1287/moor.1060.0233
  23. Johari, R. (2004). Efficiency Loss in Market Mechanisms for Resource Allocation, Ph.D. thesis, MIT, Cambridge, MA.
  24. Johari, R., Mannor, S. and Tsitsiklis, J.N. (2005). Efficiency loss in a network resource allocation game: The case of elastic supply, IEEE Transactions on Automatic Control 50(11): 1712-1724.10.1109/TAC.2005.858687
  25. Johari, R. and Tsitsiklis, J.N. (2004). Efficiency loss in a network resource allocation game, Mathematics of Operation Research 29(3): 407-435.10.1287/moor.1040.0091
  26. Johari, R. and Tsitsiklis, J.N. (2009). Efficiency of scalar-parameterized mechanisms, Operations Research 57(4): 823-839.10.1287/opre.1080.0638
  27. Kakutani, S. (1941). A generalization of Brouwer’s fixed point theorem, Duke Mathematical Journal 8(3): 457-459.10.1215/S0012-7094-41-00838-4
  28. Karpowicz, M. (2010). Coordination in Hierarchical Systems with Rational Agents, Ph.D. thesis, Warsaw University of Technology, Warsaw.
  29. Karpowicz, M. (2011). Designing auctions: A historical perspective, Journal of Telecommunications and Information Technology 3: 114-122.
  30. Kelly, F.P. (1997). Charging and rate control for elastic traffic, European Transactions on Telecommunications 8(1): 33-37.10.1002/ett.4460080106
  31. Kelly, F.P., Maulloo, A.K. and Tan, D.K. (1998). Rate control for communication networks: Shadow prices, proportional fairness, and stability, Journal of the Operational Research Society 49(3): 237-252.10.1057/palgrave.jors.2600523
  32. Kołodziej, J. and Xhafa, F. (2011). Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids, International Journal of Applied Mathematics and Computer Science 21(2): 243-257, DOI: 10.2478/v10006-011-0018-x.10.2478/v10006-011-0018-x
  33. Krishna, V. (2002). Auction Theory, Academic Press, San Diego, CA.
  34. La, R.J. and Anantharam, V. (2000). Charge-sensitive TCP and rate control in the Internet, IEEE INFOCOM 2000, Tel-Aviv, Israel, pp. 1166-1175.
  35. Laffont, J.-J. and Martimort, D. (2002). The Theory of Incentives, Princeton University Press, Princeton, NJ.10.1515/9781400829453
  36. Low, S.H. (2003). A duality model of TCP and queue management algorithms, IEEE/ACM Transactions on Networking 11(4): 525-536.10.1109/TNET.2003.815297
  37. Low, S.H. and Lapsley, D.E. (1999). Optimization flow control, I: Basic algorithm and convergence, IEEE/ACM Transactions on Networking 7(6): 861-874.10.1109/90.811451
  38. Low, S., Paganini, F., Wang, J. and Doyle, J. (2003). Linear stability of TCP/RED and a scalable control, Computer Networks 43(5): 633-647.10.1016/S1389-1286(03)00304-9
  39. Low, S., Peterson, L. and Wang, L. (2002). Understanding TCP Vegas: A duality model, Journal of the ACM (JACM) 49(2): 207-235.10.1145/506147.506152
  40. Lubacz, J. (Ed.) (2011). Auction Mechanisms in Telecommunications, WKŁ, Warsaw, (in Polish).
  41. Maheswaran, R. and Basar, T. (2004). Social welfare of selfish agents: Motivating efficiency for divisible resources, Proceedings of the 43rd IEEE Conference on Decision and Control, The Bahamas.10.1109/CDC.2004.1430264
  42. Malinowski, K. (2002). Optimization network flow control and price coordination with feedback: Proposal of a new distributed algorithm, Computer Communications 25(11-12): 1028-1036.10.1016/S0140-3664(02)00017-8
  43. Mas-Colell, A., Whinston, M.D. and Green, J.R. (1995). Mi-croeconomic Theory, Oxford University Press, New York, NY.
  44. Maskin, E. (1999). Nash equilibrium and welfare optimality, The Review of Economic Studies 66(1): 23-38.10.1111/1467-937X.00076
  45. Milgrom, P. (2004). Putting Auction Theory to Work, Cambridge University Press, New York, NY.10.1017/CBO9780511813825
  46. Milgrom, P. and Weber, R. (1982). A theory of auctions and competitive bidding, Econometrica 50(5): 1089-1122.10.2307/1911865
  47. Mo, J. and Walrand, J. (2000). Fair end-to-end window-based congestion control, IEEE/ACM Transactions on Networking 8(5): 556-567.10.1109/90.879343
  48. Myerson, R.B. (1981). Optimal auction design, Mathematics of Operations Research 6(1): 58-73.10.1287/moor.6.1.58
  49. Myerson, R.B. (1991). Game Theory: Analysis of Conflict, Harvard University Press, Cambridge, MA.
  50. Nash, J. (1950). Equilibrium points in n-person games, Proceedings of National Academy of Science 36(1): 48-49.10.1073/pnas.36.1.48106312916588946
  51. Nash, J. (1951). Non-cooperative games, Annals of Mathematics 54(2): 289-295.10.2307/1969529
  52. Negishi, T. (1960). Welfare economics and existence of an equilibrium for a competitive economy, Metroeconomica 12(2-3): 92-97.10.1111/j.1467-999X.1960.tb00275.x
  53. Ogryczak, W., Pióro, M. and Tomaszewski, A. (2005). Telecommunications network design and max-min optimization problem, Journal of Telecommunications and Information Technology 3: 43-56.
  54. Ogryczak, W., Wierzbicki, A. and Milewski, M. (2008). A multi-criteria approach to fair and efficient bandwidth allocation, Omega 36(3): 451-463.10.1016/j.omega.2005.12.005
  55. Pióro, M. and Medhi, D. (2004). Routing, Flow, and Capacity Design in Communication and Computer Networks, Morgan Kaufmann, San Francisco, CA.10.1016/B978-012557189-0/50011-1
  56. Rockafellar, R.T. and Wets, R.J.-B. (2004). Variational Analysis, A Series of Comprehensive Studies in Mathematics, Vol. 317, Springer-Verlag, Berlin/Heidelberg.
  57. Rosen, J.B. (1965). Existence and uniqueness of equilibrium points for concave n-person games, Econometrica 33(3): 520-534.10.2307/1911749
  58. Rotschild, M. and Stiglitz, J. (1976). Equilibrium in competitive insurance markets: An essay on the economics of imperfect information, Quarterly Journal of Economics 90(4): 630-649.10.2307/1885326
  59. Sen, A. (1969). Quasi-transitivity, rational choice and collective decisions, Review of Economic Studies 36(107): 381-93.10.2307/2296434
  60. Sen, A. (1970). Interpersonal aggregation and partial comparability, Econometrica 38(3): 393-409.10.2307/1909546
  61. Sen, A. (1977). On weights and measures: Informational constraints in social welfare, Econometrica 45(7): 1539-1572.10.2307/1913949
  62. Srikant, R. (2003). The Mathematics of Internet Congestion Control, Birkhäuser, Boston, MA.10.1007/978-0-8176-8216-3
  63. Stallings, W. (1998). High-Speed Networks, Prentice Hall, Upper Saddle River, NJ.
  64. Stiglitz, J. (2000). The contributions of the economics of information to twentieth century economics, The Quarterly Journal of Economics 115(4): 1441-1478.10.1162/003355300555015
  65. Uzawa, H. (1960). Market mechanisms and mathematical programming, Econometrica 28(4): 872-881.10.2307/1907569
  66. Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed tenders, Journal of Finance 16(1): 8-37.10.1111/j.1540-6261.1961.tb02789.x
  67. Wei, D.X., Jin, C., Low, S.H. and Hegde, S. (2006). FAST TCP: Motivation, architecture, algorithms, performance, IEEE/ACM Transactions on Networking 16(6): 1246-1259.10.1109/TNET.2006.886335
  68. Wierzbicki, A. P., Makowski, M. and Wessels, J. (2001). ModelBased Decision Support Methodology with Environmental Applications, Kluwer Academic Publishers, Dordrecht.10.1007/978-94-015-9552-0
  69. Yang, S. and Hajek, B. (2005). Revenue and stability of a mechanism for efficient allocation of a divisible good, Mimeo, University of Illinois, Urbana-Champaign, IL.
  70. Yang, S. and Hajek, B. (2007). VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional signals, IEEE Journal on Selected Areas in Communications 25(6): 1237-1243.10.1109/JSAC.2007.070817
DOI: https://doi.org/10.2478/v10006-012-0071-0 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 951 - 969
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Michał P. Karpowicz, published by Sciendo
This work is licensed under the Creative Commons License.