Have a personal or library account? Click to login
Data-driven models for fault detection using kernel PCA: A water distribution system case study Cover

Data-driven models for fault detection using kernel PCA: A water distribution system case study

Open Access
|Dec 2012

References

  1. Aizerman, M., Braverman, E. and Rozonoer, L. (1964). Theoretical foundations of the potential function method in pattern recognition, <em>Automation and Remote Control </em><bold>25</bold>: 821-837.
  2. Alpaydin, E. (2010). <em>Introduction to Machine Learning</em>, The MIT Press, Cambridge, MA.
  3. Barshan, E., Ghodsi, A., Azimifar, Z. and Jahromi, M.Z. (2011). Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds, <em>Pattern Recognition </em><bold>44</bold>(7): 1357-1371.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2010.12.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2010.12.015</a></dgdoi:pub-id>
  4. Brdyś, M., Grochowski, M., Gminski, T., Konarczak, K. and Drewa, M. (2008). Hierarchical predictive control of integrated wastewater treatment systems, <em>Control Engineering Practice </em><bold>16</bold>(6): 751-767.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.conengprac.2007.01.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conengprac.2007.01.008</a></dgdoi:pub-id>
  5. Campbell, W.M., Campbell, J.P., Reynolds, D.A., Singer, E. and Torres-Carrasquillo, P.A. (2006). Support vector machines for speaker and language recognition, <em>Computer Speech and Language </em><bold>20</bold>(2-3): 210-229.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.csl.2005.06.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.csl.2005.06.003</a></dgdoi:pub-id>
  6. Duzinkiewicz, K., Borowa, A., Mazur, K., Grochowski, M., Brdys, M.A. and Jezior, K. (2008). Detection and localisation in drinking water distribution networks by multiregional PCA, <em>Studies in Informatics and Control </em><bold>17</bold>(2): 135-152.
  7. Hoffman, H. (2007). Kernel PCA for novelty detection, <em>Pattern Recognition </em><bold>40</bold>(3): 863-874.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2006.07.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2006.07.009</a></dgdoi:pub-id>
  8. Hott, K. (2008). Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel, <em>Image and Vision Computing </em><bold>26</bold>(11): 1490-1498.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.imavis.2008.04.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.imavis.2008.04.008</a></dgdoi:pub-id>
  9. Isermann, R. (1984). Process fault detection based on modeling and estimation methods-A survey, <em>Automatica </em><bold>20</bold>(4): 387-404.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0005-1098(84)90098-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0005-1098(84)90098-0</a></dgdoi:pub-id>
  10. Jackson, J.E. (1991). <em>A User’s Guide to Principal Components</em>, Wiley, Newark, NJ.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/0471725331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/0471725331</a></dgdoi:pub-id>
  11. Jezior, K., Mazur, K., Borowa, A., Grochowski, M. and Brdys, M. A. (2007). Multiregional PCA for leakage detection and localisation in DWDS-Chojnice case study, <em>in </em>J. Korbicz, K. Patan and M. Kowal (Eds.), <em>Fault Diagnosis and</em>
  12. <em>Fault Tolerant Control</em>, Academic Publishing House EXIT, Warsaw, pp. 303-310.
  13. Kulczycki, P. and Charytanowicz, M. (2010). A complete gradient clustering algorithm formed with kernel estimators, <em>International Journal of Applied Mathematics and Computer Science </em><bold>20</bold>(1): 123-134, DOI: <a href="https://doi.org/10.2478/v10006-010-0009-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0009-3.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-010-0009-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0009-3</a></dgdoi:pub-id>
  14. Li, J., Li, X. and Tao, D. (2008). KPCA for semantic object extraction in images, <em>Pattern Recognition </em><bold>41</bold>(10): 3244-3250.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2008.03.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2008.03.018</a></dgdoi:pub-id>
  15. Lima, C.A. and Coelho, A.L. (2011). Kernel machines for epilepsy diagnosis via EEG signal classification: A comparative study, <em>Artificial Intelligence in Medicine </em><bold>53</bold>(2): 83-95.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.artmed.2011.07.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.artmed.2011.07.003</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">21852077</dgpm:pub-id>
  16. Mashford, J., Silva, D.D., Marney, D. and Burn, S. (2009). An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine, <em>Proceedings of the 3rd International Conference on Network and System Security, Gold Coast, Australia, </em>pp. 534-539.
  17. Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral equations, <em>Philosophical Transactions of the Royal Society of London, Series A </em><bold>209</bold>(441-458): 415-446.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1098/rsta.1909.0016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1098/rsta.1909.0016</a></dgdoi:pub-id>
  18. Nogayama, T., Takahashi, H. and Muramatsu, M. (2003). Generalization of kernel PCA and automatic parameter tuning, <em>IEIC Technical Report </em><bold>103</bold>(389): 43-48.
  19. Nowicki, A. and Grochowski, M. (2011). Kernel PCA in application to leakage detection in drinking water distribution system, <em>in </em>P. Jedrzejowicz, N.T. Nguyen and K. Hoang (Eds.), <em>ICCCI (1)</em>, Lecture Notes in Computer Science, Vol. 6922, Springer, Berlin, pp. 497-506.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-23935-9_49" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-23935-9_49</a></dgdoi:pub-id>
  20. Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, <em>International Journal of Applied Mathematics and Computer Science </em><bold>22</bold>(1): 225-237, DOI: <a href="https://doi.org/10.2478/v10006-012-0017-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0017-6.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-012-0017-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0017-6</a></dgdoi:pub-id>
  21. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Mu¨ller, K.-R., Ra¨tsch, G. and Smola, A.J. (1999). Input space versus feature space in kernel-based methods, <em>IEEE Transactions on Neural Networks </em><bold>10</bold>(5): 1000-1017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/72.788641" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/72.788641</a></dgdoi:pub-id>
  22. Schölkopf, B., Smola, A. and Mu¨ller, K.R. (1998). Nonlinear component analysis as a kernel eigenvalue problem, <em>Neural Computation </em><bold>10</bold>(5): 1299-1319.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/089976698300017467" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/089976698300017467</a></dgdoi:pub-id>
  23. Shawe-Taylor, J. and Cristianini, N. (2004). <em>Kernel Methods for Pattern Analysis</em>, Cambridge University Press, Cambridge.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1017/CBO9780511809682" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/CBO9780511809682</a></dgdoi:pub-id>
  24. Slišković, D., Grbic´, R. and Hocenski, Ž. (2011). Methods for plant data-based process modeling in soft-sensor development, <em>Automatika </em><bold>52</bold>(4): 306-318.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/00051144.2011.11828430" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00051144.2011.11828430</a></dgdoi:pub-id>
  25. Thornton, J., Sturm, R. and Kunkel, G. (2008). <em>Water Loss Control</em>, McGraw-Hill Companies, New York, NY.
  26. Venkatasubramanian, V., Rengaswamy, R. and Kavuri, S. (2003a). A review of process fault detection and diagnosis, Part II: Qualitative models and search strategies, <em>Computers and Chemical Engineering </em><bold>27</bold>(3): 313-326.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0098-1354(02)00161-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0098-1354(02)00161-8</a></dgdoi:pub-id>
  27. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. and Yin, K. (2003b). A review of process fault detection and diagnosis, Part III: Process history based methods, <em>Computers and Chemical Engineering </em><bold>27</bold>(3): 327-346.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0098-1354(02)00162-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0098-1354(02)00162-X</a></dgdoi:pub-id>
  28. Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. (2003c). A review of process fault detection and diagnosis, Part I: Quantitative model-based methods, <em>Computers and Chemical Engineering </em><bold>27</bold>(3): 293-311.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0098-1354(02)00160-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0098-1354(02)00160-6</a></dgdoi:pub-id>
  29. Xiao-Li, C. and Jiang Chao-Yuan, G.S.-Y. (2008). Leakage monitoring and locating method of water supply pipe network, <em>Proceedings of the 7th International Conference on Machine Learning and Cybernetics, Kunming, China</em>, pp. 497-506.
  30. Xiong, H., Swamy, M. and Ahmad, M.O. (2005). Optimizing the kernel in the empirical feature space, <em>IEEE Transactions on Neural Networks </em><bold>16</bold>(2): 460-474.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TNN.2004.841784" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TNN.2004.841784</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">15787152</dgpm:pub-id>
DOI: https://doi.org/10.2478/v10006-012-0070-1 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 939 - 949
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Adam Nowicki, Michał Grochowski, Kazimierz Duzinkiewicz, published by Sciendo
This work is licensed under the Creative Commons License.