Have a personal or library account? Click to login
Observer-based controller design of time-delay systems with an interval time-varying delay Cover

Observer-based controller design of time-delay systems with an interval time-varying delay

Open Access
|Dec 2012

References

  1. Baser, U. and Kizilsac, B. (2007). Dynamic output feedback Hcontrol problem for linear neutral systems, IEEE Transactions on Automatic Control 52(6): 1113-1118.10.1109/TAC.2007.899049
  2. Blizorukova, M., Kappel, F. and Maksimov, V. (2001). A problem of robust control of a system with time delay, International Journal of Applied Mathematics and Computer Science 11(4): 821-834.
  3. Botmart, T., Niamsup, P. and Phat, V.N. (2011). Delay-dependent exponential stabilization for uncertain linear systems with interval non-differentiable time-varying delays, Applied Mathematics and Computation 217(21): 8236-8247.10.1016/j.amc.2011.02.097
  4. Busłowicz, M. (2010). Robust stability of positive continuous-time linear systems with delays, International Journal of Applied Mathematics and Computer Science 20(4): 665-670, DOI: 10.2478/v10006-010-0049-8.10.2478/v10006-010-0049-8
  5. Chen, J.D. (2007). Robust Houtput dynamic observer-based control design of uncertain neutral systems, Journal of Optimization Theory and Applications 132(1): 193-211.10.1007/s10957-006-9143-3
  6. Fridman, E. and Shaked, U. (2002). A descriptor system approach to Hcontrol of linear time-delay systems, IEEE Transactions on Automatic Control 47(2): 253-270.10.1109/9.983353
  7. Gu, K., Kharitonov, V. L. and Chen, J. (2003). Stability of Time-Delay Systems, Birkhauser, Boston, MA.10.1007/978-1-4612-0039-0
  8. Ivanescu, D., Dion, J.M., Dugard, L. and Niculescu, S.I. (2000). Dynamical compensation for time-delay systems: An LMI approach, International Journal of Robust and Nonlinear Control 10(8): 611-628.10.1002/1099-1239(20000715)10:8<;611::AID-RNC501>3.0.CO;2-E
  9. Kaczorek, T. and Busłowicz, M. (2004). Minimal realization for positive multivariable linear systems with delay, International Journal of Applied Mathematics and Computer Science 14(2): 181-187.
  10. Kowalewski, A. (2009). Time-optimal control of infinite order hyperbolic systems with time delays, International Journal of Applied Mathematics and Computer Science 19(4): 597-608, DOI: 10.2478/v10006-009-0047-x.10.2478/v10006-009-0047-x
  11. Kwon, O.M., Park, J.H., Lee, S.M. and Won, S.C. (2006). LMI optimization approach to observer-based controller design of uncertain time-delay systems via delayed feedback, Journal of Optimization Theory and Applications 128(1): 103-117.10.1007/s10957-005-7560-3
  12. Park, J.H. (2004). On the design of observer-based controller of linear neutral delay-differential systems, Applied Mathematics and Computation 150(1): 195-202.10.1016/S0096-3003(03)00209-1
  13. Park, P. (1999). A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Transactions on Automatic Control 44(4): 876-877.10.1109/9.754838
  14. Phat, V.N., Khongtham, Y. and Ratchagit, K. (2012). LMI approach to exponential stability of linear systems with interval time-varying delays, Linear Algebra and Its Applications 436(1): 243-251.10.1016/j.laa.2011.07.016
  15. Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, International Journal of Applied Mathematics and Computer Science 21(1): 127-135, DOI: 10.2478/v10006-011-0009-y.10.2478/v10006-011-0009-y
  16. Richard, J.P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694.10.1016/S0005-1098(03)00167-5
  17. Shao, H. (2009). New delay-dependent stability criteria for systems with interval delay, Automatica 45(3): 744-749.10.1016/j.automatica.2008.09.010
  18. Shao, H. and Han, Q.L. (2012). Less conservative delay-dependent stability criteria for linear systems with interval time-varying delays, International Journal of Systems Science 43(5): 894-902.10.1080/00207721.2010.543480
  19. Tokarzewski, J. (2009). Zeros in linear systems with time delay in state, International Journal of Applied Mathematics and Computer Science 19(4): 609-617, DOI: 10.2478/v10006-009-0048-9.10.2478/v10006-009-0048-9
  20. Tong, S., Yang, G. and Zhang, W. (2011). Observer-based fault-tolerant control against sensor failures for fuzzy systems with time delays, International Journal of Applied Mathematics and Computer Science 21(4): 617-627, DOI: 10.2478/v10006-011-0048-4.10.2478/v10006-011-0048-4
  21. Trinh, H. (1999). Linear functional state observer for time-delay systems, International Journal of Control 72(18): 1642-1658.10.1080/002071799219986
  22. Trinh, H. and Aldeen, M. (1994). Stabilization of uncertain dynamic delay systems by memoryless feedback controllers, International Journal of Control 59(6): 1525-1542.10.1080/00207179408923144
  23. Trinh, H. and Aldeen, M. (1997). On robustness and stabilization of linear systems with delayed nonlinear perturbations, IEEE Transactions on Automatic Control 42(7): 1005-1007.10.1109/9.599983
  24. Trinh, H.M., Teh, P.S. and Fernando, T.L. (2010). Time-delay systems: Design of delay-free and low-order observers, IEEE Transactions on Automatic Control 55(10): 2434-2438.10.1109/TAC.2010.2063510
  25. Xiang, Z., Wang, R. and Chen, Q. (2010). Fault tolerant control of switched nonlinear systems with time delay under asynchronous switching, International Journal of Applied Mathematics and Computer Science 20(3): 497-506, DOI: 10.2478/v10006-010-0036-0.10.2478/v10006-010-0036-0
DOI: https://doi.org/10.2478/v10006-012-0068-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 921 - 927
Published on: Dec 28, 2012
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Mai Viet Thuan, Vu Ngoc Phat, Hieu Trinh, published by University of Zielona Góra
This work is licensed under the Creative Commons License.