Benvenuti L. and Farina L. (2004). A tutorial on the positive realization problem, <em>IEEE Transactions on Automatic Control </em><bold>49</bold>(5): 651-664.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TAC.2004.826715" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TAC.2004.826715</a></dgdoi:pub-id>
Kaczorek T. (2005). Positive minimal realizations for singular discrete-time systems with delays in state and delays in control, <em>Bulletin of the Polish Academy of Sciences: Technical Sciences </em><bold>53</bold>(3): 293-298.
Kaczorek T. (2006a). A realization problem for positive continuous-time linear systems with reduced numbers of delays, <em>International Journal of Applied Mathematics and Computer Science </em><bold>16</bold>(3): 325-331.
Kaczorek T. (2006b). Computation of realizations of discrete-time cone systems, <em>Bulletin of the Polish Academy of Sciences: Technical Sciences </em><bold>54</bold>(3): 347-350.
Kaczorek T. (2006c). Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs, <em>International Journal of Applied Mathematics and Computer Science </em><bold>16</bold>(2): 169-174.
Kaczorek T. (2009a). Fractional positive linear systems, <em>Kyber-netes: The International Journal of Systems & Cybernetics </em><bold>38</bold>(7/8): 1059-1078.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1108/03684920910976826" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1108/03684920910976826</a></dgdoi:pub-id>
Kaczorek T. (2011a). Computation of positive stable realizations for linear continuous-time systems, <em>Bulletin of the Polish Academy of Sciences: Technical Sciences </em><bold>59</bold>(3): 273-281 and <em>Proceedings of the 20th European Conference on Circuit Theory and Design</em>, <em>Linköping, Sweden</em>.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10175-011-0033-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10175-011-0033-y</a></dgdoi:pub-id>
Kaczorek T. (2011c). Positive stable realizations with system Metzler matrices, <em>Archives of Control Sciences </em><bold>21</bold>(2): 167- 188 and <em>Proceedings of the MMAR’2011 Conference, Mie˛ -dzyzdroje, Poland</em>, (on CD-ROM).<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10170-010-0038-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10170-010-0038-z</a></dgdoi:pub-id>
Kaczorek T. (2012a). Existence and determination of the set of Metzler matrices for given stable polynomials, <em>International Journal of Applied Mathematics and Computer Science </em><bold>22</bold>(2): 389-399, DOI: <a href="https://doi.org/10.2478/v10006-012-0029-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0029-2.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-012-0029-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0029-2</a></dgdoi:pub-id>
Kaczorek T. (2012b). Positive stable realizations of discrete-time linear systems, <em>Bulletin of the Polish Academy of Sciences: Technical Sciences </em><bold>60</bold>(3): 605-616.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10175-012-0072-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10175-012-0072-z</a></dgdoi:pub-id>
Shaker U. and Dixon M. (1977). Generalized minimal realization of transfer-function matrices, <em>International Journal of Control </em><bold>25</bold>(5): 785-803.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/00207177708922269" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00207177708922269</a></dgdoi:pub-id>