Have a personal or library account? Click to login
BEM and FEM results of displacements in a poroelastic column Cover

References

  1. Albers, B. (2010). <em>Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media</em>, Postdoctoral thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 48, Shaker, Aachen.
  2. Allard, J.F. (1993). <em>Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials</em>, Elsevier, Essex.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-94-011-1866-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-94-011-1866-8</a></dgdoi:pub-id>
  3. Atalla, N., Hamdi, A.M. and Panneton, R. (2001). Enhanced weak integral formulation for mixed (u,p) poroelastic equations, <em>Journal of the Acoustical Society of America </em><bold>109</bold>(6): 3065-3068.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1121/1.1365423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1121/1.1365423</a></dgdoi:pub-id>
  4. Atalla, N., Panneton, R. and Debergue, P. (1998). A mixed pressure-displacement formulation for poroelastic materials, <em>Journal of the Acoustical Society of America </em><bold>104</bold>(3): 1444-1452.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1121/1.424355" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1121/1.424355</a></dgdoi:pub-id>
  5. Biot, M.A. (1941). General theory of three dimensional consolidation, <em>Journal of Applied Physics </em><bold>12</bold>(2): 155-164.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1063/1.1712886" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.1712886</a></dgdoi:pub-id>
  6. Biot, M.A. (1956). Theory of propagation of elastic waves in a fluid saturated porous solid, I: Low frequency range, II: Higher frequency range, <em>Journal of the Acoustical Society of America </em><bold>28</bold>(2): 168-191.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1121/1.1908241" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1121/1.1908241</a></dgdoi:pub-id>
  7. Bonnet, G. (1987). Basic singular solutions for a poroelastic medium in the dynamic range, <em>Journal of the Acoustical Society of America </em><bold>82</bold>(5): 1758-1762.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1121/1.395169" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1121/1.395169</a></dgdoi:pub-id>
  8. Cheng, A.H.-D., Badmus, T. and Beskos, D.E. (1991). Integral equations for dynamic poroelasticity in frequency domain with BEM solution, <em>Journal of Engineering Mechanics (ASCE) </em><bold>117</bold>(5): 1136-1157.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1136)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)0733-9399(1991)117:5(1136)</a></dgdoi:pub-id>
  9. de Boer, R. and Ehlers, W. (1986). Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme, Teil I, <em>Technical Report 40</em>, Forschungsberichte aus dem Fachbereich Bauwesen der Universität-GH Essen, Essen.
  10. Dominguez, J. (1992). Boundary element approach for dynamic poroelastic problems, <em>International Journal for Numerical Methods in Engineering </em><bold>35</bold>(2): 307-324.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/nme.1620350206" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/nme.1620350206</a></dgdoi:pub-id>
  11. Eringen, A.C. and Suhubi, S.S. (1975). <em>Elastodynamics</em>, Vol. II, Academic Press, New York, NY.
  12. Fischer, M. (2004). <em>The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction</em>, Ph.D. thesis, Universität Stuttgart, Stuttgart.
  13. Goodman, M.A. and Cowin, S.C. (1972). A continuum theory of granular materials, <em>Archive for Rational Mechanics and Analysis </em><bold>44</bold>(4): 249-266.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/BF00284326" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF00284326</a></dgdoi:pub-id>
  14. Göransson, P. (1995). A weighted residual formulation of the acoustic wave propagation through a flexible porous material and comparison with a limp material model, <em>Journal of Sound and Vibration </em><bold>182</bold>(3): 479-494.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1006/jsvi.1995.0211" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1006/jsvi.1995.0211</a></dgdoi:pub-id>
  15. Hild, P. (2011). A sign preserving mixed finite element approximation for contact problems, <em>International Journal of Applied Mathematics and Computer Science </em><bold>21</bold>(3): 487-498, DOI: <a href="https://doi.org/10.2478/v10006-011-0037-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-011-0037-7.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-011-0037-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-011-0037-7</a></dgdoi:pub-id>
  16. Holler, S. (2006). <em>Dynamisches Mehrphasenmodell mit hypoplastischer Materialformulierung der Feststoffphase, </em>Ph.D. thesis, RWTH Aachen, Aachen.
  17. Kelder, O. and Smeulders, D.M.J. (1997). Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone, <em>Geophysics </em><bold>62</bold>(6): 1794-1796.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1190/1.1444279" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1190/1.1444279</a></dgdoi:pub-id>
  18. Kogut, J. and Ciurej, H. (2010). A vehicle-track-soil dynamic interaction problem in sequential and parallel formulation, <em>International Journal of Applied Mathematics and Computer Science </em><bold>20</bold>(2): 295-303, DOI: <a href="https://doi.org/10.2478/v10006-010-0022-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0022-6.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-010-0022-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0022-6</a></dgdoi:pub-id>
  19. Korsawe, J. and Starke, G. (2005). A least-squares mixed finite element method for Biot’s consolidation problem in porous media, <em>SIAM Journal on Numerical Analysis </em><bold>43</bold>(1): 318-339.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1137/S0036142903432929" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1137/S0036142903432929</a></dgdoi:pub-id>
  20. Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006). Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches, <em>Computer Methods in Applied Mechanics and Engineering </em><bold>195</bold>(9-12): 1096-1115.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.cma.2005.04.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cma.2005.04.011</a></dgdoi:pub-id>
  21. Lewis, R.W. and Schrefler, BA. (1998). <em>The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, </em>Wiley, Chichester.
  22. Naumann, K. (2004). <em>Implementierung eines Finiten Elementes in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung poröser Medien, </em>Master’s thesis, TU Berlin, Berlin.
  23. Panneton, R. and Atalla, N. (1997). An efficient finite element scheme for solving the threedimensional poroelasticity problem in acoustics, <em>Journal of the Acoustical Society of America </em><bold>101</bold>(6): 3287-3298.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1121/1.418345" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1121/1.418345</a></dgdoi:pub-id>
  24. Plona, T. J. (1980). Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, <em>Applied Physics Letters </em><bold>36</bold>(4): 259-261.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1063/1.91445" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.91445</a></dgdoi:pub-id>
  25. Rackwitz, F., Naumann, K. and Savidis, S.A. (2005). Implementierung eines Finiten Elements zur Konsolidationsberechnung mit ANSYS, <em>23rd CAD-FEM Users’ Meeting 2005, Bonn, Germany, </em>(on CD-ROM/DVD).
  26. Savidis, S.A., Albers, B., Tas¸an, H.E. and Savvidis, G. (2011). Finite-Elemente-Berechnungen quasistatischer und dynamischer Probleme mit einem poroelastischen Zweikomponentenmodell, <em>Bauingenieur </em><bold>5</bold>: 241-249.
  27. Savvidis, G. (2009). <em>Implementierung eines Finiten Elements in das FEM-Programmsystem ANSYS zur gekoppelten Fluid-Struktur Berechnung von wassergesättigten Böden, </em>Master’s thesis, TU Berlin, Berlin.
  28. Schanz, M. (2001). Application of 3d time domain boundary element formulation to wave propagation in poroelastic solids, <em>Engineering Analysis with Boundary Elements </em><bold>25</bold>(4-5): 363-376.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0955-7997(01)00022-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0955-7997(01)00022-4</a></dgdoi:pub-id>
  29. Schanz, M. and Cheng, A.H.-D. (2000). Transient wave propagation in a one-dimensional poroelastic column, <em>Acta Mechanica </em><bold>145</bold>(1-4): 1-18.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/BF01453641" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF01453641</a></dgdoi:pub-id>
  30. Schrefler, B.A. and Scotta, R. (2001). A fully coupled dynamic model for two-phase fluid flow in deformable porous media, <em>Computer Methods in Applied Mechanics and Engineering </em><bold>190</bold>(24-25): 3223-3246.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0045-7825(00)00390-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0045-7825(00)00390-X</a></dgdoi:pub-id>
  31. Taşan, H.E. (2012). <em>Zur Dimensionierung der Monopile-Gründungen von Offshore-Windenergieanlagen</em>, Ph.D. thesis, Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, Vol. 52, Aachen.
  32. Taşan, H.E., Rackwitz, F. and Savidis, S.A. (2010). Behaviour of cyclic laterally loaded diameter monopiles in saturated sand, <em>Proceedings of the 7th European Conference of Numerical Methods in Geotechnical Engineering, Trondheim, Norway, </em>pp. 889-894.
  33. von Estorff, O. and Hagen, C. (2006). Iterative coupling of FEM and BEM in 3D transient elastodynamics, <em>Engineering Analysis with Boundary Elements </em><bold>30</bold>(7): 611-622.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.enganabound.2006.01.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.enganabound.2006.01.007</a></dgdoi:pub-id>
  34. von Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear, <em>1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, USA, </em>Vol. 1, pp. 54-56.
  35. Wilmanski, K. (1996). Porous media at finite strains-The new model with the balance equation for porosity, <em>Archives of Mechanics </em><bold>48</bold>(4): 591-628.
  36. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A. and Shiomi, T. (1999). <em>Computational Geomechanics with Special Reference to Earthquake Engineering</em>, John Wiley &amp; Sons, West Sussex.
  37. Zienkiewicz, O.C. and Shiomi, T. (1984). Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution, <em>International Journal for Numerical and Analytical Methods in Geomechanics </em><bold>8</bold>(1): 71-96.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/nag.1610080106" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/nag.1610080106</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/v10006-012-0065-y | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 883 - 896
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Bettina Albers, Stavros A. Savidis, H. Ercan Taşan, Otto von Estorff, Malte Gehlken, published by Sciendo
This work is licensed under the Creative Commons License.