Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., García, S., Sánchez, L. and Herrera, F. (2011). Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, <em>Journal of Multiple-Valued Logic and Soft Computing </em><bold>17</bold>(2-3): 255-287.
Anderson, T. and Darling, D. (1954). A test of goodness-of-fit, <em>Journal of the American Statistical Association </em><bold>49</bold>(268): 765-769.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1954.10501232" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1954.10501232</a></dgdoi:pub-id>
Anscombe, F. and Glynn, W. (1983). Distribution of the kurtosis statistic b2 for normal samples, <em>Biometrika </em><bold>70</bold>(1): 227-234.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/70.1.227" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/70.1.227</a></dgdoi:pub-id>
Bergmann, G. and Hommel, G. (1988). Improvements of general multiple test procedures for redundant systems of hypotheses, <em>in </em>P. Bauer, G. Hommel and E. Sonnemann (Eds.), <em>Multiple Hypotheses Testing</em>, Springer-Verlag, Berlin, pp. 100-115.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-52307-6_8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-52307-6_8</a></dgdoi:pub-id>
Czarnowski, I. and Je˛drzejowicz, P. (2011). Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem, <em>International Journal of Applied Mathematics and Computer Science </em><bold>21</bold>(1): 57-68, DOI: <a href="https://doi.org/10.2478/v10006-011-0004-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-011-0004-3.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-011-0004-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-011-0004-3</a></dgdoi:pub-id>
D’Agostino, R. (1970). Transformation to normality of the null distribution of g1, <em>Biometrika </em><bold>57</bold>(3): 679-681.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/57.3.679" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/57.3.679</a></dgdoi:pub-id>
D’Agostino, R., Belanger, A. and D’Agostino Jr., R. (1990). A suggestion for using powerful and informative tests of normality, <em>The American Statistician </em><bold>44</bold>(4): 316-321.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/00031305.1990.10475751" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00031305.1990.10475751</a></dgdoi:pub-id>
Derrac, J., García, S., Molina, D. and Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, <em>Swarm and Evolutionary Computation </em><bold>1</bold>: 3-18.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.swevo.2011.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.swevo.2011.02.002</a></dgdoi:pub-id>
Dunn, O. (1961). Multiple comparisons among means, <em>Journal of the American Statistical Association </em><bold>56</bold>(238): 52-64.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1961.10482090" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1961.10482090</a></dgdoi:pub-id>
Finner, H. (1993). On a monotonicity problem in step-down multiple test procedures, <em>Journal of the American Statistical Association </em><bold>88</bold>(423): 920-923.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1993.10476358" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1993.10476358</a></dgdoi:pub-id>
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, <em>Journal of the American Statistical Association </em><bold>32</bold>(200): 675-701.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1937.10503522" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1937.10503522</a></dgdoi:pub-id>
García, S., Fernández, A., Luengo, J. and Herrera, F. (2009). A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability, <em>Soft Computing </em><bold>10</bold>(13): 959-977.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00500-008-0392-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00500-008-0392-y</a></dgdoi:pub-id>
García, S., Fernández, A. and Luengo, J.and Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, <em>Information Sciences </em><bold>180</bold>: 2044-2064.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ins.2009.12.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ins.2009.12.010</a></dgdoi:pub-id>
García, S. and Herrera, F. (2008). An extension on “Statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons, <em>Journal of Machine Learning Research </em><bold>9</bold>: 2677-2694.
Graczyk, M., Lasota, T. and Trawin´ski, B. (2009). Comparative analysis of premises valuation models using KEEL, RapidMiner, and WEKA, <em>in </em>N.T. Nguyen, R. Kowalczyk and S.-M. Chen (Eds.), <em>ICCCI 2009</em>, Lecture Notes in Artificial Intelligence, Vol. 5796, Springer, Heidelberg, pp. 800-812.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-04441-0_70" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-04441-0_70</a></dgdoi:pub-id>
Hodges, J. and Lehmann, E. (1962). Ranks methods for combination of independent experiments in analysis of variance, <em>Annals of Mathematical Statistics </em><bold>33</bold>: 482-497.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/aoms/1177704575" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/aoms/1177704575</a></dgdoi:pub-id>
Holland, B. and Copenhaver, M. (1987). An improved sequentially rejective Bonferroni test procedure, <em>Biometrics </em><bold>43</bold>(2): 417-423.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/2531823" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/2531823</a></dgdoi:pub-id>
Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test, <em>Biometrika </em><bold>75</bold>(2): 383-386.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/75.2.383" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/75.2.383</a></dgdoi:pub-id>
Hommel, G.and Bernhard, G. (1994). A rapid algorithm and a computer program for multiple test procedures using procedures using logical structures of hypotheses, <em>Computer Methods and Programs in Biomedicine </em><bold>43</bold>: 213-216.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0169-2607(94)90072-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0169-2607(94)90072-8</a></dgdoi:pub-id>
Igel, C. and Hüsken, M. (2003). Empirical evaluation of the improved RPROP learning algorithm, <em>Neurocomputing </em><bold>50</bold>: 105-123.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0925-2312(01)00700-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0925-2312(01)00700-7</a></dgdoi:pub-id>
Iman, R. and Davenport, J. (1980). Approximations of the critical region of the Friedman statistic, <em>Communications in Statistics </em><bold>18</bold>: 571-595.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/03610928008827904" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/03610928008827904</a></dgdoi:pub-id>
Jackowski, K. and Woz´niak, M. (2010). Method of classifier selection using the genetic approach, <em>Expert Systems </em><bold>27</bold>(2): 114-128.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1111/j.1468-0394.2010.00513.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1468-0394.2010.00513.x</a></dgdoi:pub-id>
Jarque, C. and Bera, A. (1987). A test for normality of observations and regression residuals, <em>International Statistical Review </em><bold>55</bold>(2): 163-172.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2307/1403192" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/1403192</a></dgdoi:pub-id>
Keskin, S. (2006). Comparison of several univariate normality tests regarding type I error rate and power of the test in simulation based small samples, <em>Journal of Applied Science Research </em><bold>2</bold>(5): 296-300.
Król, D., Lasota, T., Trawin´ski, B. and Trawin´ski, K. (2008). Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal, <em>International Journal of Hybrid Intelligent Systems </em><bold>5</bold>(3): 111-128.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3233/HIS-2008-5302" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3233/HIS-2008-5302</a></dgdoi:pub-id>
Krzystanek, M., Lasota, T. and Trawin´ski, B. (2009). Comparative analysis of evolutionary fuzzy models for premises valuation using KEEL, <em>in </em>N.T. Nguyen, R. Kowalczyk and S.-M. Chen (Eds.), <em>ICCCI 2009</em>, Lecture Notes in Artificial Intelligence, Vol. 5796, Springer, Heidelberg, pp. 838-849.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-04441-0_73" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-04441-0_73</a></dgdoi:pub-id>
Lasota, T., Mazurkiewicz, J., Trawin´ski, B. and Trawin´ski, K. (2010). Comparison of data driven models for the validation of residential premises using KEEL, <em>International Journal of Hybrid Intelligent Systems </em><bold>7</bold>(1): 3-16.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3233/HIS-2010-0101" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3233/HIS-2010-0101</a></dgdoi:pub-id>
Lasota, T., Telec, Z., Trawin´ski, B. and Trawin´ski, K. (2011). Investigation of the ets evolving fuzzy systems applied to real estate appraisal, <em>Journal of Multiple-Valued Logic and Soft Computing </em><bold>17</bold>(2-3): 229-253.
Lilliefors, H. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown, <em>Journal of the American Statistical Association </em><bold>62</bold>(318): 399-402.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1967.10482916" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1967.10482916</a></dgdoi:pub-id>
Luengo, J., García, S. and Herrera, F. (2009). A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests, <em>Expert Systems with Applications </em><bold>36</bold>: 7798-7808.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2008.11.041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2008.11.041</a></dgdoi:pub-id>
Lughofer, E., Trawin´ski, B., Trawin´ski, K., Kempa, O. and Lasota, T. (2011). On employing fuzzy modeling algorithms for the valuation of residential premises, <em>Information Sciences </em><bold>181</bold>: 5123-5142.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ins.2011.07.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ins.2011.07.012</a></dgdoi:pub-id>
Motulsky, H. (2010). <em>Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking</em>, 2nd Edn., Oxford University Press, New York, NY.
Quade, D. (1979). Using weighted rankings in the analysis of complete blocks with additive block effects, <em>Journal of the American Statistical Association </em><bold>74</bold>: 680-683.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1979.10481670" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1979.10481670</a></dgdoi:pub-id>
Romão, X., Delgado, R. and Costa, A. (2010). An empirical power comparison of univariate goodness-of-fit tests for normality, <em>Journal of Statistical Computation and Simulation </em><bold>80</bold>(5): 545-591.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/00949650902740824" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00949650902740824</a></dgdoi:pub-id>
Rom, D. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality, <em>Biometrika </em><bold>77</bold>(3): 663-665.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/77.3.663" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/77.3.663</a></dgdoi:pub-id>
Royston, P. (1993). A pocket-calculator algorithm for the Shapiro-Francia test for non-normality: An application to medicine, <em>Statistics in Medicine </em><bold>12</bold>(2): 181-184.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/sim.4780120209" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/sim.4780120209</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">8446812</dgpm:pub-id>
Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach, <em>Data Mining and Knowledge Discovery </em><bold>1</bold>: 317-327.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/A:1009752403260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1009752403260</a></dgdoi:pub-id>
Shaffer, J. (1986). Modified sequentially rejective multiple test procedures, <em>Journal of the American Statistical Association </em><bold>81</bold>(395): 826-831.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/01621459.1986.10478341" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/01621459.1986.10478341</a></dgdoi:pub-id>
Shapiro, S. and Wilk, M. (1965). An analysis of variance test for normality (complete samples), <em>Biometrika </em><bold>52</bold>(3/4): 591-611.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/biomet/52.3-4.591" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/biomet/52.3-4.591</a></dgdoi:pub-id>
Smętek, M. and Trawin´ski, B. (2011). Investigation of genetic algorithms with self-adaptive crossover, mutation, and selection, <em>in </em>E. Corchado, M. Kurzyn´ski and M. Woz´niak (Eds.), <em>HAIS 2011</em>, Lecture Notes in Artificial Intelligence, Vol. 6678, Springer, Heidelberg, pp. 116-123.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-21219-2_16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-21219-2_16</a></dgdoi:pub-id>
Smotroff, I., Friedman, D. and Connolly, D. (1991). Self organizing modular neural networks, <em>IEEE International Joint Conference on Neural Networks, IJCNN’91, Seattle, WA, USA</em>, pp. 187-192.
Székely, G.J. and Rizzo, M. (2005). A new test for multivariate normality, <em>Journal of Multivariate Analysis </em><bold>93</bold>(1): 58-80.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jmva.2003.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmva.2003.12.002</a></dgdoi:pub-id>
Troç, M. and Unold, O. (2010). Self-adaptation of parameters in a learning classifier system ensemble machine, <em>International Journal of Applied Mathematics and Computer Science </em><bold>20</bold>(1): 157-174, DOI: <a href="https://doi.org/10.2478/v10006-010-0012-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0012-8.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-010-0012-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0012-8</a></dgdoi:pub-id>
Yazici, B. and Yolacan, S. (2007). A comparison of various tests of normality, <em>Journal of Statistical Computation and Simulation </em><bold>77</bold>(2): 175-183.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/10629360600678310" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/10629360600678310</a></dgdoi:pub-id>
Zaman, M. and Hirose, H. (2011). Classification performance of bagging and boosting type ensemble methods with small training sets, <em>New Generation Computing </em><bold>29</bold>(3): 277-292.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-011-0303-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-011-0303-0</a></dgdoi:pub-id>