Have a personal or library account? Click to login
Combined classifier based on feature space partitioning Cover
Open Access
|Dec 2012

References

  1. Alpaydin, E. (1999). Combined 5 x 2 cv f test for comparing supervised classification learning algorithms, <em>Neural Computation </em><bold>11</bold>(8): 1885-1892.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/089976699300016007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/089976699300016007</a></dgdoi:pub-id><dgpm:pub-id xmlns:dgpm="http://degruyter.com/resources/fetched-pubmed-id" pub-id-type="pmid">10578036</dgpm:pub-id>
  2. Alpaydin, E. (2010). <em>Introduction to Machine Learning</em>, 2nd Edn., The MIT Press, London.
  3. Ashlock, D. (2006). <em>Evolutionary Computation for Modeling and Optimization</em>, 1st Edn., Springer, New York, NY.
  4. Baram, Y. (1998). Partial classification: The benefit of deferred decision, <em>IEEE Transactions on Pattern Analysis and Machine Intelligence </em><bold>20</bold>(8): 769-776.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/34.709564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/34.709564</a></dgdoi:pub-id>
  5. Baruque, B., Porras, S. and Corchado, E. (2011). Hybrid classification ensemble using topology-preserving clustering, <em>New Generation Computing </em><bold>29</bold>(3): 329-344.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-011-0306-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-011-0306-x</a></dgdoi:pub-id>
  6. Biggio, B., Fumera, G. and Roli, F. (2007). Bayesian analysis of linear combiners, <em>Proceedings of the 7th International Conference on Multiple Classifier Systems, MCS’07, Prague, Czech Republic</em>, pp. 292-301.
  7. Brown, G. and Kuncheva, L.I. (2010). “Good” and “bad” diversity in majority vote ensembles, <em>9th International</em><em>Workshop on Multiple Classifier Systems, MCS 2010, Cairo, Egypt</em>, pp. 124-133.
  8. Chmaj, G., Walkowiak, K., Tarnawski, M. and Kucharzak, M. (2012). Heuristic algorithms for optimization of task allocation and result distribution in peer-to-peer computing systems, <em>International Journal of Applied Mathematics and Computer Science </em><bold>22</bold>(3): 733-748, DOI: <a href="https://doi.org/10.2478/v10006-012-0055-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0055-0.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-012-0055-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0055-0</a></dgdoi:pub-id>
  9. Chow, C.K. (1965). Statistical independence and threshold functions, <em>IEEE Transactions on Electronic Computers </em><bold>EC-14</bold>(1): 66-68.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/PGEC.1965.264059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/PGEC.1965.264059</a></dgdoi:pub-id>
  10. Cordella, L., Foggia, P., Sansone, C., Tortorella, F. and Vento, M. (2000). A cascaded multiple expert system for verification, <em>in </em>J. Kittler and F. Roli (Eds.), <em>Multiple Classifier Systems</em>, Lecture Notes in Computer Science, Vol. 1857, Springer, Berlin/Heidelberg, pp. 330-339.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/3-540-45014-9_32" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/3-540-45014-9_32</a></dgdoi:pub-id>
  11. Dietterich, T.G. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes, <em>Journal of Artificial Intelligence Research </em><bold>2</bold>: 263-286.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1613/jair.105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1613/jair.105</a></dgdoi:pub-id>
  12. Duda, R.O., Hart, P.E. and Stork, D.G. (2001). <em>Pattern Classification</em>, 2nd Edn., Wiley, New York, NY.
  13. Duin, R. (2002). The combining classifier: To train or not to train?, <em>16th International Conference on Pattern Recognition, Quebec, Canada</em>, Vol. 2, pp. 765-770.
  14. Frank, A. and Asuncion, A. (2010). UCI machine learning repository, http://archive.ics.uci.edu/ml.
  15. Giacinto, G., Roli, F. and Fumera, G. (2000). Design of effective multiple classifier systems by clustering of classifiers, <em>15th International Conference on Pattern Recognition, Barcelona, Spain</em>, Vol. 2, pp. 160-163 .
  16. Goebel, K. and Yan, W. (2004). Choosing classifiers for decision fusion, <em>Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden</em>, pp. 563-568.
  17. Goldberg, D.E. (1989). <em>Genetic Algorithms in Search, Optimization and Machine Learning</em>, 1st Edn., Addison-Wesley Longman Publishing Co., Inc., Boston, MA.
  18. Hansen, L. and Salamon, P. (1990). Neural network ensembles, <em>IEEE Transactions on Pattern Analysis and Machine Intelligence </em><bold>12</bold>(10): 993 -1001.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/34.58871" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/34.58871</a></dgdoi:pub-id>
  19. Ho, T.K. (1998). The random subspace method for constructing decision forests, <em>IEEE Transactions on Pattern Analysis and Machine Intelligence </em><bold>20</bold>(8): 832-844.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/34.709601" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/34.709601</a></dgdoi:pub-id>
  20. Jackowski, K. and Woz´niak, M. (2009). Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas, <em>Pattern Analysis and Applications </em><bold>12</bold>(4): 415-425.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10044-008-0137-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10044-008-0137-7</a></dgdoi:pub-id>
  21. Jacobs, R.A. (1995). Methods for combining experts’ probability assessments, <em>Neural Computation</em><bold>7</bold>(5): 867-888.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/neco.1995.7.5.867" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/neco.1995.7.5.867</a></dgdoi:pub-id>
  22. Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E. (1991). Adaptive mixtures of local experts, <em>Neural Computation </em><bold>3</bold>(1): 79-87.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1162/neco.1991.3.1.79" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1162/neco.1991.3.1.79</a></dgdoi:pub-id>
  23. Jain, A., Duin, R. and Mao, J. (2000). Statistical pattern recognition: A review, <em>IEEE Transactions on Pattern Analysis and Machine Intelligence </em><bold>22</bold>(1): 4-37.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/34.824819" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/34.824819</a></dgdoi:pub-id>
  24. Jain, A.K., Murty, M.N. and Flynn, P.J. (1999). Data clustering: A review, <em>ACM Computing Surveys </em><bold>31</bold>(3): 264-323.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/331499.331504" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/331499.331504</a></dgdoi:pub-id>
  25. Kacprzak, T., Walkowiak, K. and Woz´niak, M. (2012). Optimization of overlay distributed computing systems for multiple classifier system-Heuristic approach, <em>Logic Journal of the IGPL </em><bold>20</bold>(4): 677-688.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1093/jigpal/jzr020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jigpal/jzr020</a></dgdoi:pub-id>
  26. Krawczyk, B. and Woz´niak, M. (2011). Designing cost-sensitive ensemble genetic approach, <em>in </em>R. Choras (Ed.), <em>Image Processing and Communications Challenges 3</em>, Advances in Intelligent and Soft Computing, Vol. 102, Springer, Berlin/Heidelberg, pp. 227-234.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-23154-4_26" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-23154-4_26</a></dgdoi:pub-id>
  27. Kuncheva, L. (2000). Clustering-and-selection model for classifier combination, <em>4th International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, Brighton, UK</em>, Vol. 1, pp. 185-188.
  28. Kuncheva, L., Bezdek, J.C. and Duin, R.P.W. (2001). Decision templates for multiple classifier fusion: An experimental comparison, <em>Pattern Recognition </em><bold>34</bold>(2): 299-314.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0031-3203(99)00223-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0031-3203(99)00223-X</a></dgdoi:pub-id>
  29. Kuncheva, L.I. (2004). <em>Combining Pattern Classifiers: Methods and Algorithms</em>, Wiley-Interscience, Hoboken, NJ.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/0471660264" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/0471660264</a></dgdoi:pub-id>
  30. Kuncheva, L., Whitaker, C., Shipp, C. and Duin, R. (2003). Limits on the majority vote accuracy in classifier fusion, <em>Pattern Analysis and Applications </em><bold>6</bold>(1): 22-31.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10044-002-0173-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10044-002-0173-7</a></dgdoi:pub-id>
  31. Kuratowski, K. and Mostowski, A. (1976). <em>Set Theory: With An Introduction to Descriptive Set Theory</em>, 2nd Edn., North-Holland Pub. Co., Amsterdam.
  32. MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations, <em>in </em>L.M.L. Cam and J. Neyman (Eds.), <em>Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability</em>, Vol. 1, University of California Press, Berkeley, CA, pp. 281-297.
  33. Marcialis, G.L. and Roli, F. (2003). Fusion of face recognition algorithms for video-based surveillance systems, <em>in </em>G.L. Foresti, C.S. Regazzoni and P.K. Varshney (Eds.), <em>Multisensor Surveillance Systems: The Fusion Perspective</em>, Dordrecht, The Netherlands, pp. 235-250.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4615-0371-2_13" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4615-0371-2_13</a></dgdoi:pub-id>
  34. Matan, O. (1996). On voting ensembles of classifiers (extended abstract), <em>Proceedings of the AAAI-96 Workshop on Integrating Multiple Learned Models, Portland, OR, USA</em>, pp. 84-88.
  35. Partridge, D. and Krzanowski, W. (1997). Software diversity: Practical statistics for its measurement and exploitation, <em>Information and Software Technology </em><bold>39</bold>(10): 707-717.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0950-5849(97)00023-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0950-5849(97)00023-2</a></dgdoi:pub-id>
  36. Polikar, R. (2006). Ensemble based systems in decision making, <em>IEEE Circuits and Systems Magazine </em><bold>6</bold>(3): 21-45.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/MCAS.2006.1688199" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/MCAS.2006.1688199</a></dgdoi:pub-id>
  37. Rastrigin, L. and Erenstein, R.H. (1981). <em>Method of Collective Recognition</em>, Energoizdat, Moscow.
  38. Ruta, D. and Gabrys, B. (2005). Classifier selection for majority voting, <em>Information Fusion </em><bold>6</bold>(1): 63-81.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.inffus.2004.04.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.inffus.2004.04.008</a></dgdoi:pub-id>
  39. Smetek, M. and Trawinski, B. (2011). Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms, <em>New Generation Computing </em><bold>29</bold>(3): 309-327.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-010-0305-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-010-0305-3</a></dgdoi:pub-id>
  40. Srinivas, M. and Patnaik, L.M. (1994). Genetic algorithms: A survey, <em>Computer </em><bold>27</bold>(6): 17-26.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/2.294849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/2.294849</a></dgdoi:pub-id>
  41. Team, R.D.C. (2008). <em>R: A Language and Environment for Statistical Computing</em>, R Foundation for Statistical Computing, Vienna.
  42. Ting, K., Wells, J., Tan, S., Teng, S. and Webb, G. (2011). Feature-subspace aggregating: Ensembles for stable and unstable learners, <em>Machine Learning </em><bold>82</bold>(3): 375-397.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10994-010-5224-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10994-010-5224-5</a></dgdoi:pub-id>
  43. Troč, M. and Unold, O. (2010). Self-adaptation of parameters in a learning classifier system ensemble machine, <em>International Journal of Applied Mathematics and Computer Science </em><bold>20</bold>(1): 157-174, DOI: <a href="https://doi.org/10.2478/v10006-010-0012-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0012-8.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-010-0012-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0012-8</a></dgdoi:pub-id>
  44. Tumer, K. and Ghosh, J. (1996). Analysis of decision boundaries in linearly combined neural classifiers, <em>Pattern Recognition </em><bold>29</bold>(2): 341-348.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0031-3203(95)00085-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0031-3203(95)00085-2</a></dgdoi:pub-id>
  45. van Erp, M., Vuurpijl, L. and Schomaker, L. (2002). An overview and comparison of voting methods for pattern recognition, <em>8th International Workshop on Frontiers in Handwriting Recognition, Ontario, Canada</em>, pp. 195-200.
  46. Walkowiak, K. (2010). Anycasting in connection-oriented computer networks: Models, algorithms and results, <em>International Journal of Applied Mathematics and Computer Science </em><bold>20</bold>(1): 207-220, DOI: <a href="https://doi.org/10.2478/v10006-010-0015-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0015-5.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-010-0015-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0015-5</a></dgdoi:pub-id>
  47. Wilk, T. and Woz´niak, M. (2011). Complexity and multithreaded implementation analysis of one class-classifiers fuzzy combiner, <em>in </em>E. Corchado, M. Kurzynski and M. Wozniak (Eds.), <em>Hybrid Artificial Intelligent Systems</em>, Lecture Notes in Computer Science, Vol. 6679, Springer, Berlin/Heidelberg, pp. 237-244.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-21222-2_29" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-21222-2_29</a></dgdoi:pub-id>
  48. Wolpert, D.H. (2001). The supervised learning no-free-lunch theorems, <em>6th Online World Conference on Soft Computing in Industrial Applications</em>, pp. 25-42.
  49. Woods, K., Kegelmeyer Jr., W.P. and Bowyer, K. (1997). Combination of multiple classifiers using local accuracy estimates, <em>IEEE Transactions on Pattern Analysis and Machine Intelligence </em><bold>19</bold>(4): 405-410.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/34.588027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/34.588027</a></dgdoi:pub-id>
  50. Woźniak, M. (2008). Experiments on linear combiners, <em>in </em>E. Pietka and J. Kawa (Eds.), <em>Information Technologies in Biomedicine</em>, Advances in Soft Computing, Vol. 47, Springer, Berlin/Heidelberg, pp. 445-452.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-540-68168-7_49" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-540-68168-7_49</a></dgdoi:pub-id>
  51. Woźniak, M. and Jackowski, K. (2009). Some remarks on chosen methods of classifier fusion based on weighted voting, <em>in </em>E. Corchado, X. Wu, E. Oja, A. Herrero and B. Baruque (Eds.), <em>Hybrid Artificial Intelligence Systems</em>, Lecture Notes in Computer Science, Vol. 5572, Springer, Berlin/Heidelberg, pp. 541-548.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-02319-4_65" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-02319-4_65</a></dgdoi:pub-id>
  52. Woźniak, M. and Zmys´lony, M. (2010). Combining classifiers using trained fuser-Analytical and experimental results, <em>Neural Network World </em><bold>13</bold>(7): 925-934.
  53. Xu, L., Krzyzak, A. and Suen, C. (1992). Methods of combining multiple classifiers and their applications to handwriting recognition, <em>IEEE Transactions on Systems, Man and Cybernetics </em><bold>22</bold>(3): 418-435.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/21.155943" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/21.155943</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/v10006-012-0063-0 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 855 - 866
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Michał Woźniak, Bartosz Krawczyk, published by Sciendo
This work is licensed under the Creative Commons License.