Have a personal or library account? Click to login
A rainfall forecasting method using machine learning models and its application to the Fukuoka city case Cover

A rainfall forecasting method using machine learning models and its application to the Fukuoka city case

Open Access
|Dec 2012

References

  1. Abrahart, R.J. and See, L. (2002). Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments, <em>Hydrology and Earth System Sciences </em><bold>6</bold>(4): 655-670.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5194/hess-6-655-2002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/hess-6-655-2002</a></dgdoi:pub-id>
  2. Baruque, B., Porras, S. and Corchado, E. (2011). Hybrid classification ensemble using topology-preserving clustering, <em>New Generation Computing </em><bold>29</bold>(3): 329-344.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-011-0306-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-011-0306-x</a></dgdoi:pub-id>
  3. Chalimourda, A., Scho¨lkopf, B. and Smola, A.J. (2004). Experimentally optimal <em>ν </em>in support vector regression for different noise models and parameter settings, <em>Neural Networks: The Official Journal of the International Neural Network Society </em><bold>17</bold>(1): 127-41.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0893-6080(03)00209-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0893-6080(03)00209-0</a></dgdoi:pub-id>
  4. Cherkassky, V. and Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression, <em>Neural Networks: The Official Journal of the International Neural Network Society </em><bold>17</bold>(1): 113-26.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0893-6080(03)00169-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0893-6080(03)00169-2</a></dgdoi:pub-id>
  5. Coulibaly, P., Hache´, M., Fortin, V. and Bobe´e, B. (2005). Improving daily reservoir inflow forecasts with model combination, <em>Journal of Hydrologic Engineering </em><bold>10</bold>(2): 91.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1061/(ASCE)1084-0699(2005)10:2(91)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)1084-0699(2005)10:2(91)</a></dgdoi:pub-id>
  6. Dawson, C.W. and Wilby, R.L. (2001). Hydrological modelling using artificial neural networks, <em>Progress in Physical Geography </em><bold>25</bold>(1): 80-108.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1191/030913301674775671" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1191/030913301674775671</a></dgdoi:pub-id>
  7. De Vos, N.J. and Rientjes, T.H.M. (2005). Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation, <em>Hydrology and Earth System Sciences </em><bold>9</bold>(1-2): 111-126.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5194/hess-9-111-2005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5194/hess-9-111-2005</a></dgdoi:pub-id>
  8. Deng, Y.-F., Jin, X. and Zhong, Y.-X. (2005). Ensemble SVR for prediction of time series, <em>Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China</em>, Vol. 2, pp. 734-748.
  9. Diebold, F.X. and Mariano, R.S. (1995). Comparing predictive accuracy, <em>Journal of Business &amp; Economic Statistics </em><bold>13</bold>(3): 253-263.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1080/07350015.1995.10524599" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07350015.1995.10524599</a></dgdoi:pub-id>
  10. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, <em>Annals of Statistics </em><bold>32</bold>(2): 407-499.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/009053604000000067" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/009053604000000067</a></dgdoi:pub-id>
  11. Everingham, Y.L., Smyth, C.W. and Inman-Bamber, N.G. (2009). Ensemble data mining approaches to forecast regional sugarcane crop production, <em>Agricultural and Forest Meteorology </em><bold>149</bold>(3-4): 689-696.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.agrformet.2008.10.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.agrformet.2008.10.018</a></dgdoi:pub-id>
  12. Fraley, C. and Hesterberg, T. (2009). Least angle regression and LASSO for large datasets, <em>Statistical Analysis and Data Mining </em><bold>1</bold>(4): 251-259.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/sam.10021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/sam.10021</a></dgdoi:pub-id>
  13. Fraser, A.M. and Swinney, H.L. (1986). Independent coordinates for strange attractors from mutual information, <em>Physical Review A </em><bold>33</bold>(2): 1134-1140.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1103/PhysRevA.33.1134" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1103/PhysRevA.33.1134</a></dgdoi:pub-id>
  14. Friedman, J.H. (1991). Multivariate adaptive regression splines, <em>Annals of Statistics </em><bold>19</bold>(1): 1-67.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1214/aos/1176347963" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1214/aos/1176347963</a></dgdoi:pub-id>
  15. Gheyas, I.A. and Smith, L.S. (2011). A novel neural network ensemble architecture for time series forecasting, <em>Neuro-computing </em><bold>74</bold>(18): 3855-3864.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.neucom.2011.08.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neucom.2011.08.005</a></dgdoi:pub-id>
  16. Hastie, T., Tibshirani, R. and Friedman, J. (2009). <em>The Elements of Statistical Learning: Data Mining, Inference and Prediction</em>, 2nd Edn., Springer, New York, NY.
  17. Hong, W. (2008). Rainfall forecasting by technological machine learning models, <em>Applied Mathematics and Computation </em><bold>200</bold>(1): 41-57.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.amc.2007.10.046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.amc.2007.10.046</a></dgdoi:pub-id>
  18. Hyndman, R.J., Slava R. and Schmidt, D. (2012). <em>forecast: Forecasting functions for time series and linear models</em>, R package version 3.19, http://CRAN.R-project.org/package=forecast
  19. Kim, T., Heo, J.-H. and Jeong, C.-S. (2006). Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms, <em>Hydrological Processes </em><bold>20</bold>(9): 2057-2075.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/hyp.6047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/hyp.6047</a></dgdoi:pub-id>
  20. Kitanidis, P.K. and Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model, 2: Application and results, <em>Water Resources Research </em><bold>16</bold>(6): 1034-1044.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1029/WR016i006p01034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1029/WR016i006p01034</a></dgdoi:pub-id>
  21. Lee, C.F., Lee, J.C. and Lee, A.C. (2000). <em>Statistics for Business and Financial Economics, </em>2nd Edn., World Scientific, Singapore.
  22. Legates, D.R. and McCabe, G.J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, <em>Water Resources Research </em><bold>35</bold>(1): 233-241.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1029/1998WR900018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1029/1998WR900018</a></dgdoi:pub-id>
  23. Li, P.W. and Lai, E.S.T. (2004). Short-range quantitative precipitation forecasting in Hong Kong, <em>Development </em><bold>288</bold>(1-2): 189-209.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jhydrol.2003.11.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jhydrol.2003.11.034</a></dgdoi:pub-id>
  24. Myers, R.H. (1990). <em>Classical and Modern Regression with Applications</em>, Duxbury, Boston, MA.
  25. Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models, I: A discussion of principles, <em>Journal of Hydrology </em><bold>10</bold>(3): 282-290.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/0022-1694(70)90255-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0022-1694(70)90255-6</a></dgdoi:pub-id>
  26. Newbold, P., Carlson, W. and Thorne, B. (2007). <em>Statistics for Business and Economics</em>, 6th Edn., Prentice Hall, Upper Saddle River, NJ.
  27. Pucheta, J., Patino, D. and Kuchen, B. (2009). A statistically dependent approach for the monthly rainfall forecast from one point observations, <em>in </em>D. Li and Z. Chunjiang (Eds.), <em>Computer and Computing Technologies in Agriculture II, Volume 2</em>, IFIP Advances in Information and Communication Technology, Vol. 294, Springer, Boston, MA, pp. 787-798.
  28. Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: hv-block cross-validation, <em>Journal of Econometrics </em><bold>99</bold>(1): 39-61.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0304-4076(00)00030-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0304-4076(00)00030-0</a></dgdoi:pub-id>
  29. Siwek, K., Osowski, S., Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, <em>International Journal of Applied Mathematics and Computer Science </em><bold>19</bold>(2): 303-315, DOI: <a href="https://doi.org/10.2478/v10006-009-0026-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-009-0026-2.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-009-0026-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-009-0026-2</a></dgdoi:pub-id>
  30. Schölkopf, B. and Smola, A.J. (2002). <em>Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond</em>, Adaptive Computation and Machine Learning, Vol. 98, MIT Press, Cambridge, MA.
  31. Schoölkopf, B. and Smola, A.J. (2004). A tutorial on support vector regression, <em>Statistics and Computing </em><bold>14</bold>(3): 199-122.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/B:STCO.0000035301.49549.88" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/B:STCO.0000035301.49549.88</a></dgdoi:pub-id>
  32. Shrestha, D.L. and Solomatine, D.P. (2006). Machine learning approaches for estimation of prediction interval for the model output, <em>Neural Networks </em><bold>19</bold>(2): 225-235.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.neunet.2006.01.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neunet.2006.01.012</a></dgdoi:pub-id>
  33. Solomatine, D.P. and Ostfeld, A. (2008). Data-driven modelling: Some past experiences and new approaches, <em>Journal of Hy-droinformatics </em><bold>10</bold>(1): 3.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2166/hydro.2008.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2166/hydro.2008.015</a></dgdoi:pub-id>
  34. Sudheer, K.P., Gosain, A.K. and Ramasastri, K.S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models, <em>Hydrological Processes </em><bold>16</bold>(6): 1325-1330.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/hyp.554" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/hyp.554</a></dgdoi:pub-id>
  35. Syed, A.R. (2011). A review of cross validation and adaptive model selection, <em>Statistics</em>, Mathematics Theses, Georgia State University, Arlanta, GA, Paper 99.
  36. Timmermann, A. (2006). Forecast combinations, <em>in </em>G. Elliott, C. Granger and A. Timmermann (Eds.), <em>Handbook of Economic Forecasting</em>, Elsevier, Amsterdam, Chapter 4, pp. 135-196.
  37. Wichard, J. (2011). Forecasting the NN5 time series with hybrid models, <em>International Journal of Forecasting </em><bold>27</bold>(3): 700-707.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijforecast.2010.02.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijforecast.2010.02.011</a></dgdoi:pub-id>
  38. Wichard, J. and Ogorzalek, M. (2007). Time series prediction with ensemble models applied to the CATS benchmark, <em>Neurocomputing </em><bold>70</bold>(13-15): 2371-2378.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.neucom.2005.12.136" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neucom.2005.12.136</a></dgdoi:pub-id>
  39. Wu, C., Chau, K. and Li, Y. (2008). River stage prediction based on a distributed support vector regression, <em>Journal of Hydrology </em><bold>358</bold>(1-2): 96-111.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.jhydrol.2008.05.028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jhydrol.2008.05.028</a></dgdoi:pub-id>
  40. Xiong, L., Shamseldin, A. Y. and Oconnor, K. (2001). A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system, <em>Journal of Hydrology </em><bold>245</bold>(1-4): 196-217.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0022-1694(01)00349-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0022-1694(01)00349-3</a></dgdoi:pub-id>
  41. Yang, Y., Lin, H., Guo, Z. and Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis, <em>Computers Geosciences </em><bold>33</bold>(1): 20-30.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.cageo.2006.05.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cageo.2006.05.010</a></dgdoi:pub-id>
  42. Zaman, M. and Hirose, H. (2011). Classification performance of bagging and boosting type ensemble methods with small training sets, <em>New Generation Computing </em><bold>29</bold>(3): 277-292.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-011-0303-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-011-0303-0</a></dgdoi:pub-id>
DOI: https://doi.org/10.2478/v10006-012-0062-1 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 841 - 854
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 S. Monira Sumi, M. Faisal Zaman, Hideo Hirose, published by Sciendo
This work is licensed under the Creative Commons License.