Have a personal or library account? Click to login
Multi-label classification using error correcting output codes Cover
Open Access
|Dec 2012

References

  1. Boutell, M.R., Luo, J., Shen, X. and Brown, C.M. (2004). Learning multi-label scene classification, <em>Pattern Recognition </em><bold>37</bold>(9): 1757-1771.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2004.03.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2004.03.009</a></dgdoi:pub-id>
  2. Clare, A. and King, R.D. (2001). Knowledge discovery in multi-label phenotype data, <em>in </em>L.D. Raedt and A. Siebes (Eds.), <em>PKDD: 5th European Conference on Machine Learning and Knowledge Discovery</em>, Lecture Notes in Computer Science, Vol. 2168, Springer, Berlin/Heidelberg, pp. 42-53.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/3-540-44794-6_4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/3-540-44794-6_4</a></dgdoi:pub-id>
  3. Crammer, K. and Singer, Y. (2003). A family of additive online algorithms for category ranking, <em>Journal of Machine Learning Research </em><bold>3</bold>: 1025-1058.
  4. Dietterich, T.G. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes, <em>Journal of Artificial Intelligence Research </em><bold>2</bold>: 263-286.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1613/jair.105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1613/jair.105</a></dgdoi:pub-id>
  5. Diplaris, S., Tsoumakas, G., Mitkas, P. and Vlahavas, I. (2005). Protein classification with multiple algorithms, <em>in </em>P. Bozanis and E.N. Houstis (Eds.), <em>10th Panhel-llenic Conference on Informatics (PCI 2005)</em>, Lecture Notes in Computer Science, Vol. 3746, Springer-Verlag, Berlin/Heidelberg, pp. 448-456.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/11573036_42" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/11573036_42</a></dgdoi:pub-id>
  6. Duan, K., Keerthi, S.S., Chu, W., Shevade, S.K. and Poo, A.N. (2003). <em>Multi-Category Classification by Soft-Max Combination of Binary Classifiers</em>, Lecture Notes in Computer Science, Vol. 2709, Springer, Berlin/Heidelberg.
  7. Elisseeff, A. and Weston, J. (2001). A kernel method for multi-labelled classification, <em>in </em>T.G. Dietterich, S. Becker and Z. Ghahramani (Eds.), <em>Advances in Neural Information Processing Systems 14</em>, MIT Press, Cambridge, MA, pp. 681-687.
  8. Ferng, C.-S. and Lin, H.-T. (2011). Multi-label classification with error-correcting codes, <em>Journal of Machine Learning Research </em><bold>20</bold>: 281-295.
  9. Ghamrawi, N. and McCallum, A. (2005). Collective multi-label classification, <em>in </em>O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury and W. Teiken (Eds.), <em>International Conference on Information and Knowledge Management, CIKM</em>, ACM, New York, NY, pp. 195-200.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.21236/ADA440081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.21236/ADA440081</a></dgdoi:pub-id>
  10. Hong, J., Min, J., Cho, U. and Cho, S. (2008). Fingerprint classification using one-vs-all support vector machines dynamically ordered with naive Bayes classifiers, <em>Pattern Recognition </em><bold>41</bold>(2): 662-671.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2007.07.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2007.07.004</a></dgdoi:pub-id>
  11. Hullermeier, E., Furnkranz, J., Cheng, W. and Brinker, K. (2008). Label ranking by learning pairwise preferences, <em>Artificial Intelligence </em><bold>172</bold>(16-17): 1897-1916.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.artint.2008.08.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.artint.2008.08.002</a></dgdoi:pub-id>
  12. Jankowski, N. (2012). Graph-based generation of a meta-learning search space. <em>International Journal of Applied Mathematics and Computer Science </em><bold>22</bold>(3): 647-667, DOI: <a href="https://doi.org/10.2478/v10006-012-0049-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0049-y</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-012-0049-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-012-0049-y</a></dgdoi:pub-id>
  13. Kajdanowicz, T. and Kazienko, P. (2009a). Hybrid repayment prediction for debt portfolio, <em>in </em>N.T. Nguyen, R. Kowalczyk and S.-M. Chen (Eds.), <em>Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, </em>Lecture Notes in Artificial Intelligence, Vol. 5796, Springer, Berlin/Heidelberg, pp. 850-857.
  14. Kajdanowicz, T. and Kazienko, P. (2009b). Prediction of sequential values for debt recovery, <em>in </em>E. Bayro-Corrochano and J.-O. Eklundh (Eds.), <em>Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, </em>Lecture Notes in Computer Science, Vol. 5856, Springer, Berlin/Heidelberg, pp. 337-344.
  15. Kajdanowicz, T., Wozniak, M. and Kazienko, P. (2011). Multiple classifier method for structured output prediction based on error correcting output codes, <em>in </em>N. Nguyen, C.-G. Kim and A. Janiak (Eds.), <em>Intelligent Information and Database Systems, </em>Lecture Notes in Computer Science, Vol. 6592, Springer, Berlin/Heidelberg, pp. 333-342.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-20042-7_34" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-20042-7_34</a></dgdoi:pub-id>
  16. Kuncheva, L.I. (2005). Using diversity measures for generating error-correcting output codes in classifier ensembles, <em>Pattern Recognition Letters </em><bold>26</bold>(1): 83-90.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patrec.2004.08.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patrec.2004.08.019</a></dgdoi:pub-id>
  17. Kuriata, E. (2008). Creation of unequal error protection codes for two groups of symbols, <em>International Journal of Applied Mathematics and Computer Science </em><bold>18</bold>(2): 251-257, DOI: <a href="https://doi.org/10.2478/v10006-008-0023-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-008-0023-x.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-008-0023-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-008-0023-x</a></dgdoi:pub-id>
  18. Loza Mencia, E. and Furnkranz, J. (2008). Pairwise learning of multilabel classifications with perceptrons, <em>Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN-08), Hong Kong, China, </em>pp. 2900-2907.
  19. Mackay, D.J.C. (2003). <em>Information Theory, Inference, and Learning Algorithms, </em>Cambridge University Press, Cambridge.
  20. Morelos-Zaragoza, R. (2006). <em>The Art of Error Correcting Coding, </em>Wiley, West Sussex.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/0470035706" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/0470035706</a></dgdoi:pub-id>
  21. Pestian, J., Brew, C, Matykiewicz, P., Hovermale, D., Johnson, N., Bretonnel Cohen, K. and Duch, W. (2007). A shared task involving multi-label classification of clinical free text, <em>Proceedings of ACL BioNLP, </em>Association of Computational Linguistics, Stroudsburg, PA.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.3115/1572392.1572411" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3115/1572392.1572411</a></dgdoi:pub-id>
  22. Read, J., Pfahringer, B., Holmes, G. and Frank, E. (2009). Classifier chains for multi-label classification, <em>13th European Conference on Principles and Practice of Knowledge Discovery in Databases/20th European Conference on Machine Learning, Bled, Slovenia, </em>pp. 254-269.
  23. Read, J., Pfahringer, B., Holmes, G. and Frank, E. (2011). Classifier chains for multi-label classification, <em>Machine Learning </em><bold>85</bold>(3): 333-359.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s10994-011-5256-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10994-011-5256-5</a></dgdoi:pub-id>
  24. Reed, I.S. and Chen, X. (1999). <em>Error-Control Coding for Data Networks</em>, Kluwer Academic Publishers, Norwell, MA.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4615-5005-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4615-5005-1</a></dgdoi:pub-id>
  25. Sammut, C. and Webb, G.I. (2011). <em>Encyclopedia of Machine Learning</em>, Springer, Berlin/Heidelberg.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-0-387-30164-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-0-387-30164-8</a></dgdoi:pub-id>
  26. Schapire, R.E. and Singer, Y. (2000). Boostexter: A boosting-based system for text categorization, <em>Machine Learning </em><bold>39</bold>(2/3): 135-168.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/A:1007649029923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1007649029923</a></dgdoi:pub-id>
  27. Trohidis, K., Tsoumakas, G., Kalliris, G. and Vlahavas, I. (2008). Multilabel classification of music into emotions, <em>9th International Conference on Music Information Retrieval (ISMIR 2008), Philadelphia, PA, USA</em>, pp. 325-330.
  28. Tsoumakas, G., Katakis, I. and Vlahavas, I. (2011). Random k-labelsets for multilabel classification, <em>IEEE Transactions on Knowledge and Data Engineering </em><bold>23</bold>(7): 1079-1089.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TKDE.2010.164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TKDE.2010.164</a></dgdoi:pub-id>
  29. Tsoumakas, G. and Vlahavas, I. (2007). <em>Random k-labelsets: An Ensemble Method for Multilabel Classification</em>, Lecture Notes in Artificial Intelligence, Vol. 4701, Springer, Berlin/Heidelberg.
  30. Zhang, M.-L. and Zhou, Z.-H. (2006). Multilabel neural networks with applications to functional genomics and text categorization, <em>IEEE Transactions on Knowledge and Data Engineering </em><bold>18</bold>(10): 1338-1351.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TKDE.2006.162" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TKDE.2006.162</a></dgdoi:pub-id>
  31. Zhang, M. and Zhou, Z. (2007). ML-KNN: A lazy learning approach to multi-label learning, <em>Pattern Recognition </em><bold>40</bold>(7): 2038-2048.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.patcog.2006.12.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2006.12.019</a></dgdoi:pub-id>
  32. Zhang, Y. and Schneider, J. (2011). Multi-label output codes using canonical correlation analysis, <em>Journal of Machine Learning Research </em><bold>15</bold>: 873-882.
DOI: https://doi.org/10.2478/v10006-012-0061-2 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 829 - 840
Published on: Dec 28, 2012
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2012 Tomasz Kajdanowicz, Przemysław Kazienko, published by Sciendo
This work is licensed under the Creative Commons License.