Albus, J.S. (1975). Data storage in the cerebellar model articulation controller (CMAC), <em>Journal of Dynamic Systems, Measurement and Control </em><bold>97</bold>(2): 228-233.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1115/1.3426923" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1115/1.3426923</a></dgdoi:pub-id>
Boyacioglu, M.A. and Avci, D. (2010). An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: The case of the Istanbul stock exchange, <em>Expert Systems with Applications </em><bold>37</bold>(12): 7908-7912.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.eswa.2010.04.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2010.04.045</a></dgdoi:pub-id>
Brdys´, M.A., Borowa, A., Idz´kowiak, P. and Brdys´, M.T. (2009). Adaptive prediction of stock exchange indices by state space wavelet networks, <em>International Journal of Applied Mathematics and Computer Science </em><bold>19</bold>(2): 337-348, DOI: <a href="https://doi.org/10.2478/v10006-009-0029-z." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-009-0029-z.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-009-0029-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-009-0029-z</a></dgdoi:pub-id>
Castro, J.L. (1995). Fuzzy logic controllers are universal approximators, <em>IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans </em><bold>25</bold>(4): 629-635.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/21.370193" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/21.370193</a></dgdoi:pub-id>
Deng, X. and Wang, X. (2009). Incremental learning of dynamic fuzzy neural networks for accurate system modeling, <em>Fuzzy Sets and Systems </em><bold>160</bold>(7): 972-987.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.fss.2008.09.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fss.2008.09.005</a></dgdoi:pub-id>
Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory, <em>Proceedings of the 6th International Symposium on Micro Machine and Human Science, MHS 1995, Nagoya, Japan</em>, pp. 39-43.
Gao, Y. and Er, M.J. (2005). Narmax time series model prediction: Feedforward and recurrent fuzzy neural network approaches, <em>Fuzzy Sets and Systems </em><bold>150</bold>(2): 331-350.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.fss.2004.09.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fss.2004.09.015</a></dgdoi:pub-id>
Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, <em>IEEE International Conference on Neural Networks, Perth, Australia</em>, pp. 1942-1948.
Khashei, M. and Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting, <em>Applied Soft Computing </em><bold>11</bold>(2): 2664-2675.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.asoc.2010.10.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.asoc.2010.10.015</a></dgdoi:pub-id>
Kim, J. and Kasabov, N. (1999). HYFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems, <em>Neural Networks </em><bold>12</bold>(9): 1301-1319.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0893-6080(99)00067-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0893-6080(99)00067-2</a></dgdoi:pub-id>
Li, C. and Cheng, H.-H. (2011). Intelligent forecasting of S&P 500 time series-A self-organizing fuzzy approach, <em>in </em>N.T. Nguyen, C.-G. Kim and A. Janiak (Eds.), <em>Intelligent Information and Database Systems</em>, Lecture Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag, Berlin/Heidelberg, pp. 411-420.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-20042-7_42" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-20042-7_42</a></dgdoi:pub-id>
Li, C. and Chiang, T.-W. (2011a). Complex fuzzy computing to time series prediction-A multi-swarm PSO learning approach, <em>in </em>N.T. Nguyen, C.-G. Kim and A. Janiak (Eds.) <em>Intelligent Information and Database Systems</em>, Lecture Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag, Berlin/Heidelberg, pp. 242-251.
Li, C. and Chiang, T.-W. (2011b). Complex fuzzy model with PSO-RLSE hybrid learning approach to function approximation, <em>International Journal of Intelligent Information and Database Systems </em><bold>5</bold>(4): 409-430.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1504/IJIIDS.2011.041325" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1504/IJIIDS.2011.041325</a></dgdoi:pub-id>
Li, C. and Chiang, T.-W. (2011c). Function approximation with complex neuro-fuzzy system using complex fuzzy sets-A new approach, <em>New Generation Computing </em><bold>29</bold>(3): 261-276.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-011-0302-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-011-0302-1</a></dgdoi:pub-id>
Li, C., Chiang, T.-W., J.-W., H. and Wu, T. (2010). Complex neuro-fuzzy intelligent approach to function approximation, <em>3rd International Workshop on Advanced Computational Intelligence, IWACI 2010, Suzhou, China</em>, pp. 151-156.
Li, C. and Lee, C.-Y. (2003). Self-organizing neuro-fuzzy system for control of unknown plants, <em>IEEE Transactions on Fuzzy Systems </em><bold>11</bold>(1): 135-150.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TFUZZ.2002.805898" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TFUZZ.2002.805898</a></dgdoi:pub-id>
Li, C. and Priemer, R. (1997). Self-learning general purpose PID controller, <em>Journal of the Franklin Institute </em><bold>334</bold>(2): 167-189.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0016-0032(97)81151-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0016-0032(97)81151-9</a></dgdoi:pub-id>
Li, C. and Priemer, R. (1999). Fuzzy control of unknown multiple-input-multiple-output plants, <em>Fuzzy Sets and Systems </em><bold>104</bold>(2): 245-267.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/S0165-0114(97)00217-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0165-0114(97)00217-0</a></dgdoi:pub-id>
Lu, C.-J., Lee, T.-S. and Chiu, C.-C. (2009). Financial time series forecasting using independent component analysis and support vector regression, <em>Decision Support Systems </em><bold>47</bold>(2): 115-125.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.dss.2009.02.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.dss.2009.02.001</a></dgdoi:pub-id>
Man, J.Y., Chen, Z. and Dick, S. (2007). Towards inductive learning of complex fuzzy inference systems, <em>Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2007, San Diego, CA, USA</em>, pp. 415-420.
Mansour, M.M., Mekhamer, S.F. and El-Kharbawe, N.-S. (2007). A modified particle swarm optimizer for the coordination of directional overcurrent relays, <em>IEEE Transactions on Power Delivery </em><bold>22</bold>(3): 1400-1410.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TPWRD.2007.899259" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPWRD.2007.899259</a></dgdoi:pub-id>
Moses, D., Degani, O., Teodorescu, H.N., Friedman, M. and Kandel, A. (1999). Linguistic coordinate transformations for complex fuzzy sets, <em>IEEE International Fuzzy Systems Conference Proceedings, FUZZ-IEEE 1999, Seoul, Korea</em>, pp. 1340-1345.
Mousavi, S.J., Ponnambalam, K. and Karray, F. (2007). Inferring operating rules for reservoir operations using fuzzy regression and ANFIS, <em>Fuzzy Sets and Systems </em><bold>158</bold>(10): 1064-1082.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.fss.2006.10.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.fss.2006.10.024</a></dgdoi:pub-id>
Ramot, D., Friedman, M., Langholz, G. and Kandel, A. (2003). Complex fuzzy logic, <em>IEEE Transactions on Fuzzy Systems </em><bold>11</bold>(4): 450-461.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/TFUZZ.2003.814832" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TFUZZ.2003.814832</a></dgdoi:pub-id>
Ramot, D., Milo, R., Friedman, M. and Kandel, A. (2002). Complex fuzzy sets, <em>IEEE Transactions on Fuzzy Systems </em><bold>10</bold>(2): 171-186.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/91.995119" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/91.995119</a></dgdoi:pub-id>
Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera, L.J., Pomares, H., Marquez, L. and Pasadas, M. (2008). Soft-computing techniques and ARMA model for time series prediction, <em>Neurocomputing </em><bold>71</bold>(4-6): 519-537.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.neucom.2007.07.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.neucom.2007.07.018</a></dgdoi:pub-id>
Simin´ski, K. (2010). Rule weights in a neuro-fuzzy system with a hierarchical domain partition, <em>International Journal of Applied Mathematics and Computer Science </em><bold>20</bold>(2): 337-347, DOI: <a href="https://doi.org/10.2478/v10006-010-0025-3." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0025-3.</a><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2478/v10006-010-0025-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/v10006-010-0025-3</a></dgdoi:pub-id>
Smetek, M. and Trawinski, B. (2011). Selection of heterogeneous fuzzy model ensembles using self-adaptive genetic algorithms, <em>New Generation Computing </em><bold>29</bold>(3): 309-327.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/s00354-010-0305-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00354-010-0305-3</a></dgdoi:pub-id>
Vo, N., Quang, T., Dinh, T. and Dinh, T. (2011). Robust visual tracking using randomized forest and online appearance model, <em>in </em>N.T. Nguyen, C.-G. Kim and A. Janiak (Eds.), <em>Intelligent Information and Database Systems, </em>Lecture Notes in Artificial Intelligence, Vol. 6592, Springer-Verlag, Berlin/Heidelberg pp. 212-221.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-642-20042-7_22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-20042-7_22</a></dgdoi:pub-id>
Yuhui, S. and Eberhart, R.C. (2001). Fuzzy adaptive particle swarm optimization, <em>Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, </em>pp. 101-106.