Have a personal or library account? Click to login
An approach to the analysis of observability and controllability in nonlinear systems via linear methods Cover

An approach to the analysis of observability and controllability in nonlinear systems via linear methods

Open Access
|Sep 2012

References

  1. Albertini, F. and D’Alessandro, D. (2002). Observability and forwardbackward observability of discrete-time nonlinear systems, Mathematics of Control, Signal and Systems 15(3): 275-290.10.1007/s004980200011
  2. Guermah, S., Djennoune, S. and Bettayeb, M. (2008). Controllability and observability of linear discrete-time fractionalorder systems, International Journal of Applied Mathematics and Computer Science 18(2): 213-222, DOI: 10.2478/v10006-008-0019-6.10.2478/v10006-008-0019-6
  3. Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control AC-22(5): 728-740.10.1109/TAC.1977.1101601
  4. Isidori, A. (1989). Nonlinear Control Systems, Springer, London.10.1007/978-3-662-02581-9
  5. Jakubczyk, B. and Sontag, E. (1990). Controllability of nonlinear discrete-time systems: A lie-algebraic approach, SIAM Journal Control and Optimization 28(1): 1-33.10.1137/0328001
  6. Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematic and Computer Science 12(2): 181-195.
  7. Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY.
  8. Kang, W. (2010). Analyzing control systems by using dynamic optimization, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy.10.3182/20100901-3-IT-2016.00110
  9. Kang, W. and Xu, L. (2009). A quantitative measure of observability and controllability, 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 6413-6418.
  10. Kawano, Y. and Ohtsuka, T. (2010). Global observability of discrete-time polynomial systems, 8th IFAC Symposium on Nonlinear Control Systems, Bologna, Italy, pp. 646-651.
  11. Klamka, J. (1973). Uncontrollability and unobservability of composite systems, IEEE Transactions on Automatic Control AC-18(5): 539-540.10.1109/TAC.1973.1100383
  12. Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control AC-20(1): 170-172.10.1109/TAC.1975.1100870
  13. Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670-4671.
  14. Koplon, R. and Sontag, E. (1993). Linear systems with signobservations, SIAM Journal Control and Optimization 31(12): 1245-1266.10.1137/0331059
  15. Kotta, U. and Schlacher, K. (2008). Possible non-integrability of observable space for discrete-time nonlinear control systems, 17th IFAC World Congress, Seoul, Korea, pp. 9852-9856.
  16. Krener, A. and Ide, K. (2009). Measures of unobservability, 48th IEEE Conference on Decision and Control, Shanghai, China, pp. 6401-6406.
  17. Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, A Division of John Sons, Inc., New York, NY.
  18. Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161-174.10.1080/02331930211981
  19. Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Shanghai, China, pp. 370-376.
  20. Nijmeijer, H. (1982). Observability of autonomous discrete-time nonlinear systems: A geometric approach, International Journal of Control 36(6): 867-874.10.1080/00207178208932936
  21. Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139-151.10.1137/0317011
  22. Sussmann, H. (1979). Single-input observability of continuoustime systems, Mathematical Systems Theory 12(3): 371-393.10.1007/BF01776584
  23. van der Schaft, A.J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338-354.10.1137/0320026
  24. Wohnam, M. (1985). Linear Multivariable Control, Springer-Verlag, New York, NY.10.1007/978-1-4612-1082-5
  25. Zhirabok, A. (1998a). Controllability of nonlinear discrete dynamic systems, NOLCOS’98 Symposium, Enschede, The Netherlands, pp. 281-283.
  26. Zhirabok, A. (1998b). Observability and controllability properties of nonlinear dynamic systems, International Journal of Computer and Systems Sciences 37(1): 1-4.
  27. Zhirabok, A. (2010). Analysis of observability and controllability of nonlinear dynamic systems by linear methods, International Journal of Computer and Systems Sciences 49(1): 8-15.10.1134/S1064230710010028
  28. Zhirabok, A. and Shumsky, A. (2008). The Algebraic Methods for Analysis of Nonlinear Dynamic Systems, Dalnauka, Vladivostok, (in Russian).
  29. Zhirabok, A. and Shumsky, A. (2010). Linear methods in observability and controllability of nonlinear systems, 8th IFAC Symposium on Nonlinear Systems, Bologna, Italy, pp. 308-313.
  30. Zhirabok, A. and Usoltsev, S. (2002). Fault diagnosis for nonlinear dynamic systems via linear methods, 15th IFAC World Congress, Barcelona, Spain.
DOI: https://doi.org/10.2478/v10006-012-0038-1 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 507 - 522
Published on: Sep 28, 2012
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Alexey Zhirabok, Alexey Shumsky, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.