Have a personal or library account? Click to login
Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems Cover

Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems

Open Access
|Jun 2012

References

  1. Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 3, pp. 682-685.
  2. Bistritz, Y. (2004). Immittance and telepolation-based procedures to test stability of continuous-discrete bivariate polynomials, Proceedings of the 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, Vol. 3, pp. 293-296.
  3. Busłowicz, M. (1997). Stability of Linear Time-invariant Systems with Uncertain Parameters, Technical University of Białystok, Białystok, (in Polish).
  4. Busłowicz, M. (2010a). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 561-565.10.2478/v10175-010-0056-9
  5. Busłowicz, M. (2010b). Stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.10.2478/v10175-010-0056-9
  6. Busłowicz, M. (2011a). Computational methods for investigation of stability of models of 2D continuous-discrete linear systems, Journal of Automation, Mobile Robotics and Intelligent Systems 5(1): 3-7.
  7. Busłowicz, M. (2011b). Improved stability and robust stability conditions for general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.10.2478/v10175-010-0056-9
  8. Busłowicz, M. and Ruszewski, A. (2011). Stability investigation of continuous-discrete linear systems, Pomiary, Automatyka, Robotyka 2(2): 566-575, (on CD-ROM, in Polish).
  9. Dymkov, M. (2005). Extremal Problems in Multiparameter Control Systems, BGEU Press, Minsk, (in Russian).
  10. Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D. H. (2004). Control theory for a class of 2D continuousdiscrete linear systems, International Journal of Control 77(9): 847-860.10.1080/00207170410001726796
  11. Dymkov M., Rogers E., Dymkou S., Gałkowski, K. and Owens D. H. (2003). Delay system approach to linear differential repetitive processes, Proceedings of the IFAC Workshop on Time-Delay Systems (TDS 2003), Rocquencourt, France, (CD-ROM).10.1016/S1474-6670(17)33348-7
  12. Gałkowski, K., Rogers, E., Paszke, W. and Owens, D. H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13(1): 87-99.
  13. Guiver, J. P. and Bose, N. K. (1981). On test for zero-sets of multivariate polynomials in noncompact polynomials, Proceedings of the IEEE 69(4): 467-469.10.1109/PROC.1981.11992
  14. Hespanha, J. (2004). Stochastic hybrid systems: Application to communication networks, Technical report, Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA.10.1007/978-3-540-24743-2_26
  15. Johanson, K., Lygeros, J. and Sastry, S. (2004). Modelling hybrid systems, in H. Unbehauen (Ed.), Encyclopedia of Life Support Systems, EOLSS, Berlin.
  16. Kaczorek, T. (1998). Vectors and Matrices in Automatics and Electrotechnics, WNT, Warsaw, p. 70, (in Polish).
  17. Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  18. Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.
  19. Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(3): 273-277.
  20. Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 27(3): 613-623.10.1108/03321640810861061
  21. Kaczorek, T. (2011). Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, Vol. 411, Springer-Verlag, Berlin.
  22. Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems—Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.
  23. Keel, L. H. and Bhattacharyya, S. P. (2000). A generalization of Mikhailov's criterion with applications, Proceedings of the American Control Conference, Chicago, IL, USA, Vol. 6, pp. 4311-4315.
  24. Liberzon, D. (2003). Switching in Systems and Control, Birkhauser, Boston, MA.10.1007/978-1-4612-0017-8
  25. Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38(7/8): 1079-1092.10.1108/03684920910976835
  26. Marchenko V. M. and Loiseau J. J. (2009). On the stability of hybrid difference-differential systems, Differential Equation 45(5), 743-756.10.1134/S0012266109050139
  27. Rogers, E., Gałkowski, K. and Owens, D. H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, Vol. 349, Springer-Verlag, Berlin.
  28. Xiao, Y. (2001). Stability test for 2-D continuous-discrete systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.10.1109/CDC.2001.980427
DOI: https://doi.org/10.2478/v10006-012-0030-9 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 401 - 408
Published on: Jun 28, 2012
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Mikołaj Busłowicz, Andrzej Ruszewski, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 22 (2012): Issue 2 (June 2012)