Have a personal or library account? Click to login
Evolving small-board Go players using coevolutionary temporal difference learning with archives Cover

Evolving small-board Go players using coevolutionary temporal difference learning with archives

Open Access
|Dec 2011

References

  1. Angeline, P. J. and Pollack, J. B. (1993). Competitive environments evolve better solutions for complex tasks, Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, Vol. 270, pp. 264-270.
  2. Azaria, Y. and Sipper, M. (2005). GP-Gammon: Genetically programming backgammon players, Genetic Programming and Evolvable Machines 6(3): 283-300.10.1007/s10710-005-2990-0
  3. Bouzy, B. and Cazenave, T. (2001). Computer Go: An AI oriented survey, Artificial Intelligence 132(1): 39-103.10.1016/S0004-3702(01)00127-8
  4. Bozulich, R. (1992). The Go Player's Almanac, Ishi Press, Tokyo.
  5. Bucci, A. (2007). Emergent Geometric Organization and Informative Dimensions in Coevolutionary Algorithms, Ph.D. thesis, Brandeis University, Waltham, MA.
  6. Caverlee, J. B. (2000). A genetic algorithm approach to discovering an optimal blackjack strategy, Genetic Algorithms and Genetic Programming at Stanford, Stanford Book-store, Stanford, CA, pp. 70-79.
  7. de Jong, E. D. (2005). The MaxSolve algorithm for coevolution, Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, Washington, DC, USA, pp. 483-489.
  8. de Jong, E. D. (2007). A monotonic archive for paretocoevolution, Evolutionary Computation 15(1): 61-93.10.1162/evco.2007.15.1.6117388779
  9. Ficici, S. G. (2004). Solution Concepts in Coevolutionary Algorithms, Ph.D. thesis, Brandeis University, Waltham, MA.
  10. Ficici, S. and Pollack, J. (2003). A game-theoretic memory mechanism for coevolution, Proceedings of the 2003 International Conference on Genetic and Evolutionary Computation, GECCO'03, Chicago, IL, USA, pp. 286-297.
  11. Fogel, D. B. (2002). Blondie24: Playing at the Edge of AI, Morgan Kaufmann Publishers, San Francisco, CA.10.1016/B978-155860783-5/50016-7
  12. Hauptman, A. and Sipper, M. (2007). Evolution of an efficient search algorithm for the mate-in-n problem in chess, Proceedings of the 10th European Conference on Genetic Programming, EuroGP'07, Valencia, Spain, pp. 78-89.
  13. Jaśkowski, W., Krawiec, K. and Wieloch, B. (2008a). Evolving strategy for a probabilistic game of imperfect information using genetic programming, Genetic Programming and Evolvable Machines 9(4): 281-294.10.1007/s10710-008-9062-1
  14. Jaśkowski, W., Krawiec, K. and Wieloch, B. (2008b). Winning Ant Wars: Evolving a human-competitive game strategy using fitnessless selection, 11th European Conference on Genetic Programming, EuroGP 2008, Naples, Italy, pp. 13-24.10.1007/978-3-540-78671-9_2
  15. Johnson, G. (1997). To test a powerful computer, play an ancient game, The New York Times, July 29.
  16. Kim, K.-J., Choi, H. and Cho, S.-B. (2007). Hybrid of evolution and reinforcement learning for Othello players, IEEE Symposium on Computational Intelligence and Games, CIG 2007, Honolulu, HI, USA, pp. 203-209.
  17. Krawiec, K. and Szubert, M. (2010). Coevolutionary temporal difference learning for small-board Go, IEEE Congress on Evolutionary Computation, Barcelona, Spain, pp. 1-8.
  18. Lasker, E. (1960). Go and Go-Moku: The Oriental Board Games, Dover Publications, New York, NY.
  19. Lubberts, A. and Miikkulainen, R. (2001). Co-evolving a Goplaying neural network, Coevolution: Turning Adaptive Algorithms Upon Themselves, Birds-of-a-Feather Workshop, Genetic and Evolutionary Computation Conference, GECCO 2001, San Francisco, CA, USA, pp. 14-19.
  20. Lucas, S. M. and Runarsson, T. P. (2006). Temporal difference learning versus co-evolution for acquiring Othello position evaluation, IEEE Symposium on Computational Intelligence and Games, CIG 2006, Reno/Lake Tahoe, NV, USA, pp. 52-59.
  21. Luke, S. (1998). Genetic programming produced competitive soccer softbot teams for RoboCup97, Genetic Programming 1998: Proceedings of the 3rd Annual Conference, Madison, WI, USA, pp. 214-222.
  22. Luke, S. (2010). ECJ 20—A Java-based Evolutionary Computation Research System http://cs.gmu.edu/~eclab/projects/ecj/
  23. Luke, S. and Wiegand, R. (2002). When coevolutionary algorithms exhibit evolutionary dynamics, Workshop on Understanding Coevolution: Theory and Analysis of Coevolutionary Algorithms (at GECCO 2002), New York, NY, USA, pp. 236-241.
  24. Mayer, H. A. (2007). Board representations for neural Go players learning by temporal difference, IEEE Symposium on Computational Intelligence and Games, CIG 2007, Honolulu, HI, USA, pp. 183-188.
  25. Mechner, D. A. (1998). All systems Go, The Sciences 38(1): 32-37.10.1002/j.2326-1951.1998.tb03356.x
  26. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, London.10.1007/978-3-662-03315-9
  27. Miconi, T. (2009). Why coevolution doesn't "work": Superiority and progress in coevolution, Proceedings of the 12th European Conference on Genetic Programming, EuroGP'09, Tübingen, Germany, pp. 49-60.
  28. Monroy, G. A., Stanley, K. O. and Miikkulainen, R. (2006). Coevolution of neural networks using a layered Pareto archive, Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, Seattle, WA, USA, pp. 329-336.
  29. Müller, M. (2009). Fuego at the Computer Olympiad in Pamplona 2009: A tournament report, Technical report, University of Alberta, Alberta.
  30. Pollack, J. B. and Blair, A. D. (1998). Co-evolution in the successful learning of backgammon strategy, Machine Learning 32(3): 225-240.10.1023/A:1007417214905
  31. Rosin, C. D. and Belew, R. K. (1997). New methods for competitive coevolution, Evolutionary Computation 5(1): 1-29.10.1162/evco.1997.5.1.110021751
  32. Runarsson, T. P. and Lucas, S. (2005). Coevolution versus selfplay temporal difference learning for acquiring position evaluation in small-board Go, IEEE Transactions on Evolutionary Computation 9(6): 628-640.10.1109/TEVC.2005.856212
  33. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers, IBM Journal of Research and Development 3(3): 210-229.10.1147/rd.33.0210
  34. Schraudolph, N. N., Dayan, P. and Sejnowski, T. J. (2001). Learning to evaluate Go positions via temporal difference methods, in N. Baba and L. C. Jain (Eds.) Computational Intelligence in Games, Studies in Fuzziness and Soft Computing, Vol. 62, Springer-Verlag, Berlin, Chapter 4, pp. 77-98.10.1007/978-3-7908-1833-8_4
  35. Silver, D., Sutton, R. and Müller, M. (2007). Reinforcement learning of local shape in the game of Go, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 1053-1058.
  36. Singer, J. A. (2001). Co-evolving a neural-net evaluation function for Othello by combining genetic algorithms and reinforcement learning, International Conference on Computational Science, San Francisco, CA, USA, pp. 377-389.
  37. Stanley, K., Bryant, B. and Miikkulainen, R. (2005). Real-time neuroevolution in the NERO video game, IEEE Transactions on Evolutionary Computation 9(6): 653-668.10.1109/TEVC.2005.856210
  38. Sutton, R. S. (1988). Learning to predict by the methods of temporal differences, Machine Learning 3(1): 9-44.10.1007/BF00115009
  39. Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction, The MIT Press, Cambridge, MA.10.1109/TNN.1998.712192
  40. Szubert, M. (2010). cECJ—Coevolutionary Computation in Java http://www.cs.put.poznan.pl/mszubert/projects/cecj.html
  41. Szubert, M., Jaśkowski, W. and Krawiec, K. (2009). Coevolutionary temporal difference learning for Othello, IEEE Symposium on Computational Intelligence and Games, CIG 2009, Milan, Italy, pp. 104-111.
  42. Tesauro, G. (1995). Temporal difference learning and TD-Gammon, Communications of the ACM 38(3): 58-68.10.1145/203330.203343
  43. Watson, R. A. and Pollack, J. B. (2001). Coevolutionary dynamics in a minimal substrate, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO2001, San Francisco, CA, USA, pp. 702-709.
DOI: https://doi.org/10.2478/v10006-011-0057-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 717 - 731
Published on: Dec 21, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Krzysztof Krawiec, Wojciech Jaśkowski, Marcin Szubert, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 4 (December 2011)