Have a personal or library account? Click to login
A neural-network controlled dynamic evolutionary scheme for global molecular geometry optimization Cover

A neural-network controlled dynamic evolutionary scheme for global molecular geometry optimization

Open Access
|Sep 2011

References

  1. Adcock, S. (n.d.). Genetic algorithm utility library, http://gaul.sourceforge.net/
  2. Angeline, P. J. (1995). Adaptive and self-adaptive evolutionary computations, in M. Palaniswami, Y. Attikiouzel, R. Marks, D. Fogel and T. Fukuda (Eds.) Computational Intelligence: A Dynamic Systems Perspective, IEEE Press, Ann Arbor, MN, p. 152.
  3. BéaUck, T. (1993). Optimal mutation rates in genetic search, in S. Forrest (Ed.), Proceedings of the 5th International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, p. 2.
  4. Cicirello, V.A. and Smith, S.F. (2000). Modeling GA performance for control parameter optimization, in L.D. Whitley, D.E. Goldberg, E. CantéuA-Paz, L. Spector, I.C. Parmee and H.-G. Beyer (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, Morgan Kaufmann, Las Vegas, NV, p. 235.
  5. Clune, J., Goings, S., Punch, B. and Goodman, E. (2005). Investigations in meta-GAs: Panaceas or pipe dreams?, GECCO Workshops, Washington, DC, USA, p. 235.
  6. Culberson, J.C. (1998). On the futility of blind search: An algorithmic view of "no free lunch", Evolutionary Computation 6(2): 109.10.1162/evco.1998.6.2.10910021743
  7. de Landgraaf, W.A., Eiben, A.E. and Nannen, V. (2007). Parameter calibration using meta-algorithms, IEEE Congress on Evolutionary Computation, Singapore, p. 71.
  8. Eiben, A.E., Hinterding, R. and Michalewicz, Z. (1999). Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation 3(2): 124.10.1109/4235.771166
  9. Floudas, C.A. and Pardalos, P. (Eds.) (2000). Optimization in Computational Chemistry and Molecular Biology, Nonconvex Optimization and Its Applications, Vol. 40, Springer, New York, NY.
  10. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr.,. J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A. (n.d.). Gaussian 03, revision c.02. Gaussian, Inc., Wallingford, CT.
  11. Harrison, R.W. (1993). Stiffness and energy conservation in molecular dynamics: An improved integrator, Journal of Computational Chemistry 14(9): 1112.10.1002/jcc.540140912
  12. Harrison, R.W., Chatterjee, D. and Weber, I.T. (1995). Analysis of six protein structures predicted by comparative modeling techniques, Proteins: Structure Function and Genetics 23(4): 463.10.1002/prot.3402304028749843
  13. Hendrickson, B. (1995). The molecule problem: Exploiting structure in global optimization, SIAM Journal of Optimization 5(4): 835.10.1137/0805040
  14. Hertz, J., Krogh, A. and Palmer, R.G. (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, CA.10.1063/1.2810360
  15. Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
  16. Moscato, P. (1999). Memetic algorithms: A short introduction, in D. Corne, M. Dorigo and F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, London, p. 219.
  17. Moscato, P. and Cotta, C. (2004). Memetic algorithms, Optimization Techniques in Engineering, Springer-Verlag, New York, NY, p. 53.
  18. Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN), http://fann.sf.net
  19. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L. and Schulten, K. (2005). Scalable molecular dynamics with NAMD, Journal of Computational Chemistry 26(16): 1781.10.1002/jcc.20289248633916222654
  20. PintéeAr, J.D. (Ed.) (2006). Global Optimization, Nonconvex Optimization and Its Applications, Vol. 85, Springer, New York, NY.
  21. Riedmiller, M. (1994). Rprop—Description and implementation details, Technical report, Institute for Logic, Complexity and Deduction Systems, University of Karlsruhe, Karlsruhe.
  22. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993). General atomic and molecular electronic structure system, Journal of Computational Chemistry 14(11): 1347.10.1002/jcc.540141112
  23. Sierka, M., DéoUbler, J., Sauer, J., Santambrogio, G., BréuUmmer, M., WéoUste, L., Janssens, E., Meijer, G. and Asmis, K.R. (2007). Unexpected structures of aluminum oxide clusters in the gas phase, Angewandte Chemie International Edition 46(18): 3372-5.10.1002/anie.20060482317385778
  24. Spears, W.M. (1995). Adapting crossover in evolutionary algorithms, Proceedings of the 4th Annual Conference on Evolutionary Programming, San Diego, CA, USA, p. 367.
  25. Spoel, D.V.D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J.C. (2005). GROMACS: Fast, flexible, and free, Journal of Computational Chemistry 26(16): 1701-1718, http://dx.doi.org/10.1002/jcc.20291.10.1002/jcc.2029116211538
  26. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G. and Ziegler, T. (2001). Chemistry with ADF, Journal of Computational Chemistry 22(9): 931.10.1002/jcc.1056
  27. Unger, R. and Moult, J. (1993). Finding the lowest free energy conformation of a protein is an NP-hard problem: Proof and implications, Bulletin of Mathematical Biology 55(6): 1183-1198, http://dx.doi.org/10.1007/BF02460703.10.1007/BF024607038281131
  28. Wales, D.J. (1999). Global optimization of clusters, crystals, and biomolecules, Science 285(5432): 1368.10.1126/science.285.5432.136810464088
  29. Wolpert, D.H. and Macready, W.G. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1(1): 67.10.1109/4235.585893
  30. Wu, A.S., Lindsay, R.K. and Riolo, R.L. (1997). Empirical observations on the roles of crossover and mutation, in T. BéaUck (Ed.), International Conference on Genetic Algorithms, ICGA, Morgan Kaufmann, San Francisco, CA, p. 362.
DOI: https://doi.org/10.2478/v10006-011-0044-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 559 - 566
Published on: Sep 22, 2011
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Anna Styrcz, Janusz Mrozek, Grzegorz Mazur, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 3 (September 2011)