Have a personal or library account? Click to login
Analysis of correlation based dimension reduction methods Cover
By: Yong Shin and  Cheong Park  
Open Access
|Sep 2011

References

  1. Anton, H. and Busby, R. (2003). Contemporary Linear Algebra, John Wiley and Sons, Denver, CO.
  2. Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis using a kernel approach, Neural Computation 12(10): 2385-2404.10.1162/089976600300014980
  3. Billings, S. and Lee, K. (2002). Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm, Neural Networks 15(2): 263-270.10.1016/S0893-6080(01)00142-3
  4. Chen, L., Liao, H., M. Ko, Lin, J. and Yu, G. (2000). A new LDA-based face recognition system which can solve the small sample size problem, Pattern Recognition 33(10): 1713-1726.10.1016/S0031-3203(99)00139-9
  5. Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley Interscience, New York, NY.
  6. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, 2nd Edn., Academic Press, San Diego, CA.
  7. Fukunaga, K. and Mantock, J. (1983). Nonparametric discriminant analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 5(6): 671-678.10.1109/TPAMI.1983.476746121869158
  8. Garthwaite, P. (1994). An interpretation of partial least squares, Journal of the American Statistical Society 89(425): 122-127.10.1080/01621459.1994.10476452
  9. He, X. and Niyogi, P. (2003). Locality preserving projections, Proceedings of the Advances in Neural Information Processing Systems Conference, Vancouver, Canada, pp. 153-160.
  10. Hotelling, H. (1936). Relations between two sets of variates, Biometrika 28(3): 321-377.10.1093/biomet/28.3-4.321
  11. Hou, C., Nie, F., Zhang, C. and Wu, Y. (2009). Learning an orthogonal and smooth subspace for image classification, IEEE Signal Processing Letters 16(4): 303-306.10.1109/LSP.2009.2014283
  12. Howland, P. and Park, H. (2004). Generalizing discriminant analysis using the generalized singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8): 995-1006.10.1109/TPAMI.2004.4615641730
  13. Jolliffe, I. (1986). Principal Component Analysis, Springer, New York, NY.10.1007/978-1-4757-1904-8
  14. Nie, F., Xiang, S. and Zhang, C. (2007). Neighborhood minmax projections, Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 993-998.
  15. Pardalos, P. and Hansen, P. (2008). Data Mining and Mathematical Programming, CRM Proceedings & Lecture Notes, Vol. 45, American Mathematical Society, Montreal.
  16. Park, C. and Park, H. (2008). A comparison of generalized linear discriminant analysis algorithms, Pattern Recognition 41(3): 1083-1097.10.1016/j.patcog.2007.07.022
  17. Roweis, S.T. and Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500): 2323-2326.10.1126/science.290.5500.2323
  18. Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality reduction, Proceedings of the IEEE International Conference on Machine Learning, Pittsburgh, PA, USA, pp. 905-912.
  19. Sun, Q., Zeng, S., Liu, Y., Heng, P. and Xia, D. (2005). A new method of feature fusion and its application in image recognition, Pattern Recognition 38(12): 2437-2448.10.1016/j.patcog.2004.12.013
  20. Sun, T. and Chen, S. (2007). Class label versus sample label-based CCA, Applied Mathematics and Computation 185(1): 272-283.10.1016/j.amc.2006.06.103
  21. Sun, T., Chen, S., Yang, J. and Shi, P. (2008). A supervised combined feature extraction method for recognition, Procedings of the IEEE International Conference on Data Mining, Pisa, Italy, pp. 1043-1048.
  22. Tenenbaum, J.B., de Silva, V. and Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction, Science 290(5500): 2319-2323.10.1126/science.290.5500.2319
  23. Wegelin, J. (2000). A survey of partial least squares (PLS) methods, with emphasis on the two block case, Technical report, Department of Statistics, University of Washington, Seattle, WA.
  24. Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q. and Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionlity reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1): 40-51.10.1109/TPAMI.2007.250598
  25. Yang, J. and Yang, J.-Y. (2003). Why can LDA be performed in PCA transformed space?, Pattern Recognition 36(2): 563-566.10.1016/S0031-3203(02)00048-1
  26. Yang, J., Yang, J., Zhang, D. and Lu, J. (2003). Feature fusion: Parallel strategy vs. serial strategy, Pattern Recognition 36(6): 1369-1381.
  27. Ye, J. (2005). Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems, Journal of Machine Learning Research 6(4): 483-502.
  28. Yu, H. and Yang, J. (2001). A direct LDA algorithm for highdimensional data-with application to face recognition, Pattern Recognition 34(10): 2067-2070.10.1016/S0031-3203(00)00162-X
DOI: https://doi.org/10.2478/v10006-011-0043-9 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 549 - 558
Published on: Sep 22, 2011
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Yong Shin, Cheong Park, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 3 (September 2011)