Have a personal or library account? Click to login
Regional control problem for distributed bilinear systems: Approach and simulations Cover

Regional control problem for distributed bilinear systems: Approach and simulations

By: Karima Ztot,  El Zerrik and  Hamid Bourray  
Open Access
|Sep 2011

References

  1. Ball, J.M., Marsden, J.E. and Slemrod, M. (1982). Controllability for distributed bilinear systems, SIAM Journal on Control and Optimization 20(4): 575-597.10.1137/0320042
  2. Bradley, M.E. and Lenhart, S. (2001). Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic Journal of Differental Equations (27): 1-15.
  3. El Alami, N. (1988). Algorithms for implementation of optimal control with quadratic criterion of bilinear systems, in A. Bensoussan and J.L. Lions (Eds.) Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, Vol. 111, Springer-Verlag, London, pp. 432-444, (in French).
  4. El Jai, A., Simon, M.C., Zerrik, E. and Prirchard, A.J. (1995). Regional controllability of distributed parameter systems, International Journal of Control 62(6): 1351-1365.10.1080/00207179508921603
  5. Joshi, H.R. (2005). Optimal control of the convective velocity coefficient in a parabolic problem, Nonlinear Analysis 63 (5-7): 1383-1390.10.1016/j.na.2005.02.025
  6. Kato, T. (1995). Perturbation Theory for Linear Operators, Springer Verlag, Berlin/Heidelberg.10.1007/978-3-642-66282-9
  7. Khapalov, A.Y. (2002a). Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM: Control, Optimisation and Calculus of Variations 7: 269-283.10.1051/cocv:2002011
  8. Khapalov, A.Y. (2002b) On bilinear controllability of the parabolic equation with the reaction-diffusion term satisfying Newton's, Journal of Computational and Applied Mathematics 21: 1-23.
  9. Khapalov, A.Y. (2010). Controllability of Partial Differential Equations Governed by Multiplicative Controls, Lecture Notes in Mathematics, Vol. 1995, Springer, Berlin, p. 284.
  10. Lenhart, S. and Liang, M. (2000). Bilinear optimal control for a wave equation with viscous damping, Houston Journal of Mathematics 26(3): 575-595.
  11. Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, NY.10.1007/978-1-4612-5561-1
  12. Zerrik, E., Ouzahra, M. and Ztot, K. (2004). Regional stabilization for infinite bilinear systems, IEE: Control Theory and Applications 151(1): 109-116.10.1049/ip-cta:20040017
  13. Zerrik, E. and Kamal, A. (2007). Output controllability for semi linear distributed parabolic system, Journal of Dynamical and Control Systems 13(2): 289-306.10.1007/s10883-007-9014-8
  14. Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semi linear distributed hyperbolic system, International Journal of Applied Mathematics and Computer Science 17(4): 437-448, DOI: 10.2478/v10006-007-0035-y.10.2478/v10006-007-0035-y
DOI: https://doi.org/10.2478/v10006-011-0038-6 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 499 - 508
Published on: Sep 22, 2011
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Karima Ztot, El Zerrik, Hamid Bourray, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 3 (September 2011)