Have a personal or library account? Click to login
A sign preserving mixed finite element approximation for contact problems Cover

A sign preserving mixed finite element approximation for contact problems

By: Patrick Hild  
Open Access
|Sep 2011

References

  1. Adams, R. (1975). Sobolev Spaces, Academic Press, New York, NY/London.
  2. Belhachmi, Z., Sac-EpéeAe, J.-M. and Sokolowski, J. (2005). Mixed finite element methods for smooth domain formulation of crack problems, SIAM Journal on Numerical Analysis 43(3): 1295-1320.10.1137/S0036142903429729
  3. Ben Belgacem, F. and Brenner, S. (2001). Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems, Electronic Transactions on Numerical Analysis 12: 134-148.
  4. Ben Belgacem, F., Hild, P. and Laborde, P. (1999). Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Mathematical Models and Methods in the Applied Sciences 9(2): 287-303.10.1142/S0218202599000154
  5. Ben Belgacem, F. and Renard, Y. (2003). Hybrid finite element methods for the Signorini problem, Mathematics of Computation 72(243): 1117-1145.10.1090/S0025-5718-03-01490-X
  6. Bernardi, C. and Girault, V. (1998). A local regularisation operator for triangular and quadrilateral finite elements, SIAM Journal on Numerical Analysis 35(5): 1893-1916.10.1137/S0036142995293766
  7. Brenner, S. and Scott, L. (2002). The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, NY.10.1007/978-1-4757-3658-8
  8. Chen, Z. and Nochetto, R. (2000). Residual type a posteriori error estimates for elliptic obstacle problems, Numerische Mathematik 84(4): 527-548.10.1007/s002110050009
  9. Ciarlet, P. (1991). The finite element method for elliptic problems, in P.G. Ciarlet and J.-L. Lions (Eds.), Handbook of Numerical Analysis, Vol. II, Part 1, North Holland, Amsterdam, pp. 17-352.
  10. CléeAment, P. (1975). Approximation by finite element functions using local regularization, RAIRO ModéeAlisation MathéeAmatique et Analyse NuméeArique 2(R-2): 77-84.10.1051/m2an/197509R200771
  11. Coorevits, P., Hild, P., Lhalouani, K. and Sassi, T. (2002). Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies, Mathematics of Computation 71(237): 1-25.10.1090/S0025-5718-01-01318-7
  12. Duvaut, G. and Lions, J.-L. (1972). Les inéeAquations en méeAcanique et en physique Dunod, Paris.
  13. Eck, C., Jarušek, J. and Krbec, M. (2005). Unilateral Contact Problems. Variational Methods and Existence Theorems, CRC Press, Boca Raton, FL.10.1201/9781420027365
  14. Fichera, G. (1964). Elastic problems with unilateral constraints, the problem of ambiguous boundary conditions, Memorie della Accademia Nazionale dei Lincei 8(7): 91-140, (in Italian).
  15. Fichera, G. (1974). Existence theorems in linear and semilinear elasticity, Zeitschrift féuUr Angewandte Mathematik und Mechanik 54(12): 24-36.10.1002/zamm.19740541205
  16. Grisvard, P. (1985). Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA.
  17. Han, W. and Sofonea, M. (2002). Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society, Providence, RI.10.1090/amsip/030
  18. Haslinger, J., HlavéaAček, I. and Nečas, J. (1996). Numerical methods for unilateral problems in solid mechanics, in P. Ciarlet and J.-L. Lions (Eds.), Handbook of Numerical Analysis, Vol. IV, Part 2, North Holland, Amsterdam, pp. 313-485.10.1016/S1570-8659(96)80005-6
  19. Hilbert, S. (1973). A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Mathematics of Computation 27: 81-89.10.1090/S0025-5718-1973-0331715-3
  20. Hild, P. (2000). Numerical implementation of two nonconforming finite element methods for unilateral contact, Computer Methods in Applied Mechanics and Engineering 184(1): 99-123.10.1016/S0045-7825(99)00096-1
  21. Hild, P. (2002). On finite element uniqueness studies for Coulomb's frictional contact model, International Journal of Applied Mathematics and Computer Science 12(1): 41-50.10.1016/S0168-9274(01)00124-6
  22. Hild, P. and Nicaise, S. (2007). Residual a posteriori error estimators for contact problems in elasticity, Mathematical Modelling and Numerical Analysis 41(5): 897-923.10.1051/m2an:2007045
  23. Hiriart-Urruty, J.-B. and LemaréeAchal, C. (1993). Convex Analysis and Minimization Algorithms I, Springer, Berlin.10.1007/978-3-662-02796-7
  24. HéuUeber, S. and Wohlmuth, B. (2005a). An optimal error estimate for nonlinear contact problems, SIAM Journal on Numerical Analysis 43(1): 156-173.10.1137/S0036142903436678
  25. HéuUeber, S. and Wohlmuth, B. (2005b). A primal-dual active set strategy for non-linear multibody contact problems, Computer Methods in Applied Mechanics and Engineering 194(27-29): 3147-3166.10.1016/j.cma.2004.08.006
  26. Khludnev, A. and Sokolowski, J. (2004). Smooth domain method for crack problems, Quarterly of Applied Mathematics 62(3): 401-422.10.1090/qam/2086037
  27. Kikuchi, N. and Oden, J. (1988). Contact Problems in Elasticity, SIAM, Philadelphia, PA.10.1137/1.9781611970845
  28. Laursen, T. (2002). Computational Contact and Impact Mechanics, Springer, Berlin.10.1007/978-3-662-04864-1
  29. Nochetto, R. and Wahlbin, L. (2002). Positivity preserving finite element approximation, Mathematics of Computation 71(240): 1405-1419.10.1090/S0025-5718-01-01369-2
  30. Scott, L. and Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation 54(190): 483-493.10.1090/S0025-5718-1990-1011446-7
  31. Strang, G. (1972). Approximation in the finite element method, Numerische Mathematik 19: 81-98.10.1007/BF01395933
  32. Wohlmuth, B. and Krause, R. (2003). Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems, SIAM Journal on Scientific Computation 25(1): 324-347.10.1137/S1064827502405318
  33. Wriggers, P. (2002). Computational Contact Mechanics, Wiley, Chichester.
DOI: https://doi.org/10.2478/v10006-011-0037-7 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 487 - 498
Published on: Sep 22, 2011
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Patrick Hild, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 3 (September 2011)