Have a personal or library account? Click to login
Constrained controllability of nonlinear stochastic impulsive systems Cover

Constrained controllability of nonlinear stochastic impulsive systems

Open Access
|Jun 2011

References

  1. Alotaibi, S., Sen, M., Goodwine, B. and Yang, K.T. (2004). Controllability of cross-flow heat exchangers, International Communications of Heat and Mass Transfer47(5): 913-924.10.1016/j.ijheatmasstransfer.2003.08.021
  2. Anichini, G. (1980). Global controllability of nonlinear control processes with prescribed controls, Journal of Optimization Theory and Applications32(2): 183-199.10.1007/BF00934723
  3. Anichini, G. (1983). Controllability and controllability with prescribed controls, Journal of Optimization Theory and Applications39(1): 35-45.10.1007/BF00934603
  4. Balachandran, K. and Dauer, J.P. (1987). Controllability of nonlinear systems via fixed point theorems, Journal of Optimization Theory and Applications53(3): 345-352.10.1007/BF00938943
  5. Balachandran, K. and Karthikeyan, S. (2007). Controllability of stochastic integrodifferential systems, International Journal of Control80(3): 486-491.10.1080/00207170601115977
  6. Balachandran, K. and Karthikeyan, S. (2010). Controllability of nonlinear stochastic systems with prescribed controls, IMA Journal of Mathematical Control and Information27(1): 77-89.10.1093/imamci/dnq002
  7. Balachandran, K., Karthikeyan, S. and Park, J.Y. (2009). Controllability of stochastic systems with distributed delays in control, International Journal of Control82(7): 1288-1296.10.1080/00207170802549537
  8. Balachandran, K. and Lalitha, D. (1992). Controllability of nonlinear Volterra integrodifferential systems with prescribed controls, Journal of Applied Mathematics and Stochastic Analysis5(2): 139-146.10.1155/S104895339200011X
  9. Benzaid, Z. (1988). Global null controllability of perturbed linear systems with constrained controls, Journal of Mathematical Analysis and Applications136(1): 201-216.10.1016/0022-247X(88)90126-6
  10. Chukwu, E.N. (1992). Global constrained null controllability of nonlinear neutral systems, Applied Mathematics and Computation49(1): 95-110.10.1016/0096-3003(92)90058-9
  11. Conti, R. (1976). Linear Differential Equations and Control, Academic Press, New York, NY.
  12. Gelig, A.K. and Churilov, A.N. (1998). Stability and Oscillations of Nonlinear Pulse-Modulated Systems, Birkhäuser, Boston, MA.10.1007/978-1-4612-1760-2
  13. Gilbert, E.G. (1992). Linear control systems with pointwise-intime constraints: What do we do about them?, Proceedings of the 1992 American Control Conference, Chicago, IL, USA, p. 2565.
  14. Hernandez, E. and O'Regan, D. (2009). Controllability of Volterra-Fredholm type systems in Banach spaces, Journal of the Franklin Institute346(2): 95-101.10.1016/j.jfranklin.2008.08.001
  15. Karthikeyan, S. and Balachandran, K. (2009). Controllability of nonlinear stochastic neutral impulsive system, Nonlinear Analysis: Hybrid Systems3(3): 266-276.10.1016/j.nahs.2009.01.010
  16. Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  17. Klamka, J. (1993). Controllability of dynamical systems—A survey, Archives of Control Sciences2: 281-307.
  18. Klamka, J. (1996). Constrained controllability of nonlinear systems, Journal of Mathematical Analysis and Applications201(2): 365-374.10.1006/jmaa.1996.0260
  19. Klamka, J. (1999). Constrained controllability of dynamical systems, International Journal of Applied Mathematics and Computer Science9(9): 231-244.
  20. Klamka, J. (2000a). Constrained approximate controllability, IEEE Transactions on Automatic Control45(9): 1745-1749.10.1109/9.880640
  21. Klamka, J. (2000b). Schauder's fixed-point theorem in nonlinear controllability problems, Control and Cybernetics29(1): 153-165.
  22. Klamka, J. (2001). Constrained controllability of semilinear systems, Nonlinear Analysis47(5): 2939-2949.10.1016/S0362-546X(01)00415-1
  23. Klamka, J. (2007a). Stochastic controllability of linear systems with state delays, International Journal of Applied Mathematics and Computer Science17(1): 5-13, DOI: 10.2478/v10006-007-001-8.
  24. Klamka, J. (2007b). Stochastic controllability of linear systems with delay in control, Bulletin of the Polish Academy of Sciences: Technical Sciences55(1): 23-29.
  25. Lakshmikantham, V., Bainiv, D. and P. Simeonov, P. (1989). Theory of Impulsive Differential Equations, World Scientific, Singapore.10.1142/0906
  26. Lukes, D.L. (1972). Global controllability of nonlinear systems, SIAM Journal of Control10(1): 112-126.10.1137/0310011
  27. Mahmudov, N.I. (2001). Controllability of linear stochastic systems, IEEE Transactions on Automatic Control46(5): 724-731.10.1109/9.920790
  28. Mahmudov, N.I. and Zorlu, S. (2003). Controllability of nonlinear stochastic systems, International Journal of Control76(2): 95-104.10.1080/0020717031000065648
  29. Respondek, J.S. (2004). Controllability of dynamical systems with constraints, System and Control Letters54(4): 293-31410.1016/j.sysconle.2004.09.001
  30. Respondek, J.S. (2007). Numerical analysis of controllability of diffusive-convective system with limited manipulating variables, International Communications in Heat and Mass Transfer34(8): 934-944.10.1016/j.icheatmasstransfer.2007.04.005
  31. Respondek, J.S. (2008). Approximate controllability of the nth order infinite dimensional systems with controls delayed by the control devices, International Journal of Systems Science39(8): 765-782.10.1080/00207720701832655
  32. Respondek, J.S. (2010). Numerical simulation in the partial differential equations: controllability analysis with physically meaningful constraints, Mathematics and Computers in Simulation81(1): 120-132.10.1016/j.matcom.2010.07.016
  33. Schmitendorf, W. and Barmish, B. (1981). Controlling a constrained linear system to an affinity target, IEEE Transactions on Automatic Control26(3): 761-763.10.1109/TAC.1981.1102689
  34. Semino, D. and Ray, W.H. (1995). Control of systems described by population balance equations, II. Emulsion polymerization with constrained control action, Chemical Engineering Science50(11): 1825-1839.
  35. Shena, L., Shi, J. and Sun, J. (2010). Complete controllability of impulsive stochastic integro-differential systems, Automatica46(6): 1068-1073.10.1016/j.automatica.2010.03.002
  36. Sikora, B. (2003). On the constrained controllability of dynamical systems with multiple delays in the state, International Journal of Applied Mathematics and Computer Science13(13): 469-479.
  37. Sivasundaram, S., and Uvah, J. (2008). Controllability of impulsive hybrid integrodifferential systems, Nonlinear Analysis: Hybrid Systems2(4): 1003-1009.10.1016/j.nahs.2008.04.003
  38. Zabczyk, J. (1981). Controllability of stochastic linear systems, Systems and Control Letters1(1): 25-31.10.1016/S0167-6911(81)80008-4
DOI: https://doi.org/10.2478/v10006-011-0023-0 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 307 - 316
Published on: Jun 22, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Shanmugasundaram Karthikeyan, Krishnan Balachandran, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 2 (June 2011)