Have a personal or library account? Click to login
Performance evaluation of MapReduce using full virtualisation on a departmental cloud Cover

Performance evaluation of MapReduce using full virtualisation on a departmental cloud

Open Access
|Jun 2011

References

  1. Anon, E.A. (1998). A measure of transaction processing power, in M. Stonebraker and J.M. Hellerstein (Eds.), Readings in Database Systems, 3rd Edn., Morgan Kaufmann, San Francisco, CA, pp. 609-621.
  2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I. and Zaharia, M. (2010). A view of cloud computing, Communications of the ACM53(4): 50-58.10.1145/1721654.1721672
  3. Bacci, B., Danelutto, M., Pelagatti, S. and Vanneschi, M. (1999). SkIE: A heterogeneous environment for HPC applications, Parallel Computing25(13): 1827-1852.10.1016/S0167-8191(99)00072-1
  4. Beaumont, O., Casanova, H., Legrand, A., Robert, Y. and Yang, Y. (2005). Scheduling divisible loads on star and tree networks: Results and open problems, IEEE Transactions on Parallel and Distributed Systems16(3): 207-218.10.1109/TPDS.2005.35
  5. Buono, D., Danelutto, M. and Lametti, S. (2010). Map, reduce and MapReduce, the skeleton way, Procedia Computer Science1(1): 2089-2097.10.1016/j.procs.2010.04.234
  6. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, Future Generation Computer Systems—The International Journal of Grid Computing: Theory Methods and Applications25(6): 599-616.10.1016/j.future.2008.12.001
  7. Buzen, J.P. and Gagliardi, U.O. (1973). The evolution of virtual machine architecture, Proceedings of the National Computer Conference and Exposition, AFIPS '73, ACM, New York, NY, pp. 291-299.
  8. Cole, M. (1989). Algorithmic Skeletons: Structured Management of Parallel Computation, Pitman/MIT Press, London.
  9. Cole, M. (2004). Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming, Parallel Computing30(3): 389-406.10.1016/j.parco.2003.12.002
  10. Danelutto, M. (2004). Adaptive task farm implementation strategies, 12th Euromicro Workshop on Parallel, Distributed and Network-Based Processing, PDP 2004, IEEE, La Coruña, pp. 416-423.
  11. Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters, Proceedings of the 6th conference on Symposium on Operating Systems Design & Implementation OSDI'04, Vol. 6, USENIX, San Francisco, CA, pp. 137-150.
  12. Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters, Communications of the ACM51(1): 107-113.10.1145/1327452.1327492
  13. González-Vélez, H. (2006). Self-adaptive skeletal task farm for computational grids, Parallel Computing32(7-8): 479-490.10.1016/j.parco.2006.07.002
  14. González-Vélez, H. and Cole, M. (2010a). Adaptive statistical scheduling of divisible workloads in heterogeneous systems, Journal of Scheduling13(4): 427-441.10.1007/s10951-009-0138-4
  15. González-Vélez, H. and Cole, M. (2010b). Adaptive structured parallelism for distributed heterogeneous architectures: A methodological approach with pipelines and farms, Concurrency and Computation: Practice and Experience22(15): 2073-2094.10.1002/cpe.1549
  16. González-Vélez, H. and Leyton, M. (2010). A survey of algorithmic skeleton frameworks: High-level structured parallel programming enablers, Software: Practice and Experience40(12): 1135-1160.10.1002/spe.1026
  17. Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S. and Shi, X. (2009). Evaluating MapReduce on virtual machines: The Hadoop case, in M. Jaatun, G. Zhao, and C. Rong (Eds.) Cloud-Com 2009, Lecture Notes in Computer Science, Vol. 5931, Springer-Verlag, Berlin/Heidelberg, pp. 519-528.10.1007/978-3-642-10665-1_47
  18. Kontagora, M. and González-Vélez, H. (2010). Benchmarking a MapReduce environment on a full virtualisation platform, in L. Barolli, F. Xhafa, S. Vitabile and H.-H. Hsu (Eds.), CISIS 2010, The Fourth International Conference on Complex, Intelligent and Software Intensive Systems, Krakow, Poland, 15-18 February 2010, IEEE Computer Society, Washington, DC, pp. 433-438.10.1109/CISIS.2010.45
  19. Kuchen, H. and Striegnitz, J. (2005). Features from functional programming for a C++ skeleton library, Concurrency and Computation: Practice and Experience17(7-8): 739-756.10.1002/cpe.844
  20. Mesghouni, K., Hammadi, S. and Borne, P. (2004). Evolutionary algorithms for job-shop scheduling, International Journal of Applied Mathematics and Computer Science14(1): 91-103.
  21. Nagarajan, A.B., Mueller, F., Engelmann, C. and Scott, S.L. (2007). Proactive fault tolerance for HPC with Xen virtualization, in B. J. Smith (Ed.), Proceedings of the 21th Annual International Conference on Supercomputing, ICS 2007, Seattle, Washington, USA, June 17-21, 2007, ACM, New York, NY, pp. 23-32.10.1145/1274971.1274978
  22. Nokia Research Center (2009). Disco, Manual version 0.2.3, Nokia Research Center http://discoproject.org
  23. Pisoni, A. (2007). Skynet, Manual version 0.9.3Geni.com,skynet.rubyforge.org
  24. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G. and Kozyrakis, C. (2007). Evaluating MapReduce for multi-core and multiprocessor systems, 13th International Conference on High-Performance Computer Architecture (HPCA-13 2007), Phoenix, AZ, USA, pp. 13-24.
  25. Robertazzi, T.G. (2003). Ten reasons to use divisible load theory, Computer36(5): 63-68.10.1109/MC.2003.1198238
  26. Sandholm, T. and Lai, K. (2009). MapReduce optimization using regulated dynamic prioritization, in J.R. Douceur, A.G. Greenberg, T. Bonald, J. Nieh (Eds.), Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, SIGMETRICS/Performance 2009, Seattle, WA, USA, June 15-19, 2009, ACM, New York, NY, pp. 299-310.10.1145/1555349.1555384
  27. The Apache Software Foundation (2008). Hadoop MapReduce tutorial, Manual version 0.15, Hadoop Project http://hadoop.apache.org
  28. VMware (2007). Understanding full virtualization, paravirtualization, and hardware assist, White Paper Revision: 20070911, VMware, Inc., Palo Alto, CA.
  29. Whitaker, A., Shaw, M. and Gribble, S.D. (2002). Scale and performance in the Denali isolation kernel, ACM SIGOPS Operating Systems Review36(SI): 195-209.10.1145/844128.844147
  30. Youseff, L., Wolski, R., Gorda, B. and Krintz, C. (2006). Paravirtualization for HPC systems, in G. Min, B. Di Martino, L.T. Yang, M. Guo and Gudula Rünger (Eds.), Frontiers of High Performance Computing and Networking—ISPA 2006 International Workshops, Sorrento, Italy, December 4-7, 2006, Lecture Notes in Computer Science, Vol. 4331, Springer-Verlag, Berlin/Heidelberg, pp. 474-486.10.2172/894791
  31. Zaharia, M., Konwinski, A., Joseph, A., Katz, R. and Stoica, I. (2008). Improving MapReduce performance in heterogeneous environments, in R. Draves and R. van Renesse (Eds.), 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, USENIX Association, Berkeley, CA.
DOI: https://doi.org/10.2478/v10006-011-0020-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 275 - 284
Published on: Jun 22, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Horacio González-Vélez, Maryam Kontagora, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 2 (June 2011)