Have a personal or library account? Click to login
On generalized inverses of singular matrix pencils Cover
Open Access
|Mar 2011

References

  1. Ayasun, S., Nwankpa, C. O. and Kwatny, H. G. (2004). Computation of singular and singularity induced bifurcation points of differential-algebraic power system model, IEEE Transactions on Circuits and Systems I 51(8): 1558.10.1109/TCSI.2004.832741
  2. Bandler, J. W. and Zhang, Q. J. (1986). Large change sensitivity analysis in linear systems using generalized householder formulae, International Journal of Circuit Theory and Applications 14(2): 89-101.10.1002/cta.4490140201
  3. Beelen, T. and van Dooren, P. (1988). An improved algorithm for the computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Its Applications 105: 9-65.10.1016/0024-3795(88)90003-1
  4. Ben-Israel, A. and Greville, T. N. E. (1974). Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, NY.
  5. Boullion, T. L. and Odell, P. L. (1971). Generalized Inverse Matrices, Wiley-Interscience, New York, NY.
  6. Brenan, K. E., Campbell, S. L. and Petzold, L. R. (1996). Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd Edn., SIAM, Philadelphia, PA.
  7. Bunse-Gerstner, A., Byers, R., Mehrmann, V. and Nichols, N. K. (1991). Numerical computation of an analytic singular value decomposition of a matrix valued function, Numerische Mathematik 60(1): 1-39.10.1007/BF01385712
  8. Campbell, S. L. and Meyer, C. D. (1979). Generalized Inverses of Linear Transformations, Dover Publications, New York, NY.
  9. Davies, A. C. (1966). Topological solution of networks containing nullators and norators, Electronics Letters 2(3): 90-92.10.1049/el:19660073
  10. Demmel, J. and Kågström, B. (1993). The generalized Schur decomposition of an arbitrary pencil λ A-B, ACM Transactions on Mathematical Software 19(2): 160-174.10.1145/152613.152615
  11. Dziurla, B. and Newcomb, R. (1989). Input-output pairing in LTV semistate systems, IEEE Transactions on Circuits and Systems 36(1): 139-141.10.1109/31.16579
  12. Dziurla, B. and Newcomb, R. W. (1987). Nonregular semistate systems: Examples and input-output pairing, Proceedings of the IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 1125-1126.
  13. Estévez Schwarz, D. and Tischendorf, C. (2000). Structural analysis of electric circuits and consequences for MNA, International Journal of Circuit Theory and Applications 28(2): 131-162.10.1002/(SICI)1097-007X(200003/04)28:2<;131::AID-CTA100>3.0.CO;2-W
  14. Fosséprez, M. (1992). Non-linear Circuits—Qualitative Analysis of Non-linear, Non-reciprocal Circuits, Wiley, Chichester.
  15. Gantmacher, F. R. (1959). Theory of Matrices, Vol. II, Chelsea, New York, NY.
  16. Gear, C. W. (1971). Simultaneous numerical solution of differential-algebraic equations, IEEE Transactions on Circuit Theory 18(1): 89-95.10.1109/TCT.1971.1083221
  17. Gear, C. W. and Petzold, L. R. (1982). Differential/algebraic systems and matrix pencils, in B. Kågström and A. Ruhe (Eds.), Matrix Pencils, Lecture Notes in Mathematics, Vol. 973, Springer-Verlag, New York, NY, pp. 75-89.
  18. Gear, C. W. and Petzold, L. R. (1984). ODE methods for the solution of differential/algebraic systems, SIAM Journal on Numerical Analysis 21(4): 717-728.10.1137/0721048
  19. Griepentrog, E. and März, R. (1986). Differential-Algebraic Equations and Their Numerical Treatment, Teubner-Texte zur Mathematik, Vol. 88, Teubner Verlagsgesellschaft, Leipzig.
  20. Günther, M. and Feldmann, U. (1999a). CAD-based electriccircuit modeling in industry, I: Mathematical structure and index of network equations, Surveys on Mathematics for Industry 8: 97-129.
  21. Günther, M. and Feldmann, U. (1999b). CAD-based electric-circuit modeling in industry, II: Impact of circuit configurations and parameters, Surveys on Mathematics for Industry 8: 131-157.
  22. Hairer, E., Lubich, C. and Roche, M. (1989). The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Lecture Notes in Mathematics, Vol. 1409, Springer-Verlag, Berlin.
  23. Hasler, M. (1986). Non-linear non-reciprocal resistive circuits with a structurally unique solution, International Journal of Circuit Theory and Applications 14(3): 237-262.10.1002/cta.4490140306
  24. Hayton, G. E., Pugh, A. C. and Fretwell, P. (1988). Infinite elementary divisors of a matrix polynomial and implications, International Journal of Control 47(1): 53-64.10.1080/00207178808905995
  25. Hou, M. (1995). Descriptor Systems: Observers and Fault Diagnosis, Fortschrittsberichte, Reihe 8: Meß-, Steuerungs- und Regelungstechnik, Vol. 482, VDI Verlag, Düsseldorf.
  26. Hou, M. and Müller, P. C. (1992). A singular matrix pencil theory for linear descriptor systems, Proceedings of the Symposium on Implicit and Nonlinear Systems, Ft Worth, TX, USA, pp. 178-190.
  27. Hou, M., Pugh, A. C. and Hayton, G. E. (1997). Generalized transfer functions and input-output equivalence, International Journal of Control 68(5): 1163-1178.10.1080/002071797223262
  28. Karcanias, N. (1987). On the characteristic, Weyr sequences, the Kronecker invariants and canonical form of a singular pencil, in R. Isermann (Ed.), Preprint from Automatic Control World Congress, Pergamon Press, Munich, pp. 109-114.10.1016/S1474-6670(17)55018-1
  29. Karcanias, N. and Hayton, G. E. (1981). Generalized autonomous dynamical systems, algebraic duality and geometric theory, in H. Akashi (Ed.), Preprint from Automatic Control World Congress, Pergamon Press, Kyoto, pp. 289-294.
  30. Kronecker, L. (1890). Algebraic reduction of pencils of bilinear forms, Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 1225-1237, (in German).
  31. Kublanovskaya, V. N. (1983). Analysis of singular matrix pencils, Journal of Mathematical Sciences 23(1): 1939-1950.10.1007/BF01093276
  32. Kunkel, P. and Mehrmann, V. (1990). Numerical solution of differential algebraic Riccati equations, Linear Algebra and Its Applications 137/138: 39-66.10.1016/0024-3795(90)90126-W
  33. Kunkel, P. and Mehrmann, V. (2006). Differential-Algebraic Equations: Analysis and Numerical Solution, EMS Publishing House, Zürich.10.4171/017
  34. Kunkel, P., Mehrmann, V., Rath, W. and Weickert, J. (1997). A new software package for linear differentialalgebraic equations, SIAM Journal on Scientific Computing 18(1): 115-138.10.1137/S1064827595286347
  35. Kwatny, H. G., Fischl, R. F. and Nwankpa, C. O. (1995). Local bifurcation in power systems: Theory, computation, and application, Proceedings of the IEEE 83(11): 1456-1483.10.1109/5.481630
  36. Marszalek, W. and Trzaska, Z. W. (2005). Singularity-induced bifurcations in electrical power systems, IEEE Transactions on Power Systems 20(1): 312-320.10.1109/TPWRS.2004.841244
  37. Mehrmann, V. L. (1991). The Autonomous Linear Quadratic Control Problem, Lecture Notes in Control and Information Science, Vol. 163, Springer-Verlag, Berlin.
  38. Meyer, C. D. and Rose, N. J. (1977). The index and the Drazin inverse of block triangular matrices, SIAM Journal on Applied Mathematics 33(1): 1-7.10.1137/0133001
  39. Müller, P. C. (2005). Remark on the solution of linear time-invariant descriptor systems, Proceedings in AppliedMathematics and Mechanics 5(1): 175-176.10.1002/pamm.200510066
  40. Özcaldiran, K. and Lewis, F. L. (1990). On the regularizability of singular systems, IEEE Transactions on Automatic Control 35(10): 1156-1160.10.1109/9.58561
  41. Pandolfi, L. (1981). On the regulator problem for linear degenerate control systems, Journal of Optimization Theory and Applications 33(2): 243-254.10.1007/BF00935549
  42. Penrose, R. (1955). A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51: 406-413.10.1017/S0305004100030401
  43. Rao, C. R. and Mitra, S. K. (1971). Generalized Inverse of Matrices and Its Applications, John Wiley & Sons, New York, NY.
  44. Reinschke, K. and Schwarz, P. (1976). Methods for Computer-Aided Analysis of Linear Networks, Elektronisches Rechnen und Regeln, Vol. 9, Akademie-Verlag, Berlin, (in German).
  45. Reißig, G. (1996). Differential-algebraic equations and impasse points, IEEE Transactions on Circuits and Systems I 43(3): 122-133.10.1109/81.486434
  46. Reißig, G. (1998). Contributions to the Theory and Applications of Implicit Differential Equations, Ph.D. thesis, Technische Universität Dresden, Dresden, (in German).
  47. Reißig, G. (1999). Extension of the normal tree method, International Journal of Circuit Theory and Applications 27(2): 241-265.10.1002/(SICI)1097-007X(199903/04)27:2<;241::AID-CTA62>3.0.CO;2-8
  48. Reißig, G. and Boche, H. (2003). On singularities of autonomous implicit ordinary differential equations, IEEE Transactions on Circuits and Systems I 50(7): 922-931.10.1109/TCSI.2002.805739
  49. Reißig, G. and Feldmann, U. (1996). Computing the generic index of the circuit equations of linear active networks, Proceedings of the International Symposium on Circuits and Systems, Atlanta, GA, USA, Vol. III, pp. 190-193.
  50. Riaza, R. (2004). A matrix pencil approach to the local stability analysis of non-linear circuits, International Journal of Circuit Theory and Applications 32(1): 23-46.10.1002/cta.258
  51. Riaza, R. (2006). Time-domain properties of reactive dual circuits, International Journal of Circuit Theory and Applications 34(3): 317-340.10.1002/cta.353
  52. Riaza, R. (2008). Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, World Scientific, River Edge, NJ.10.1142/6746
  53. Röbenack, K. (1999). Contribution to the Analysis of Descriptor Systems, Shaker-Verlag, Aachen, (in German).
  54. Röbenack, K. and Reinschke, K. J. (1998). Digraph based determination of Jordan block size structure of singular matrix pencils, Linear Algebra and Its Applications 275-276: 495-507.10.1016/S0024-3795(97)10023-4
  55. Röbenack, K. and Reinschke, K. J. (2000). Structural analysis of the input-output behaviour of singular descriptor systems, Workshop über Deskriptorsysteme, Paderborn, Germany, (in German).
  56. Sannuti, P. (1981). Singular perturbations in the state space approach of linear electrical networks, International Journal of Circuit Theory and Applications 9(1): 47-57.10.1002/cta.4490090106
  57. Sincovec, R. F., Erisman, A. M., Yip, E. L. and Epton, M. A. (1981). Analysis of descriptor systems using numerical algorithms, IEEE Transactions on Automatic Control 26(1): 139-147.10.1109/TAC.1981.1102560
  58. Straube, B., Reinschke, K., Vermeiren, W., Röbenack, K., Müller, B. and Clauß, C. (2001). DAE-index increase in analogue fault simulation, in R. Merker and W. Schwarz (Eds.), System Design Automation—Fundamentals, Principles, Methods, Examples, Kluwer, Boston, MA, pp. 221-232.10.1007/978-1-4757-6666-0_19
  59. Tischendorf, C. (1996). Graph-theoretic determination of the structural index of algebraic-differential equations in network analysis in W. Mathis and P. Noll (Eds.), Neue Anwendungen theoretischer Konzepte in der Elektrotechnik mit Gedenksitzung zum 50. Todestag von Wilhelm Cauer, VDE-Verlag, Berlin, pp. 55-60, (in German).
  60. Tischendorf, C. (1999). Topological index calculation of DAEs in circuit simulation, Surveys on Mathematics for Industry 8(3-4): 187-199.
  61. van Dooren, P. M. (1981). The generalized eigenstructure problem in linear system theory, IEEE Transactions on Automatic Control 26(1): 111-129.10.1109/TAC.1981.1102559
  62. Vardulakis, A. I. G. and Karcanias, N. (1983). Relations between strict equivalence invariants and structure at infinity of matrix pencils, IEEE Transactions on Automatic Control 28(4): 514-516.10.1109/TAC.1983.1103254
  63. Vardulakis, A. I. G., Limebeer, D. N. J. and Karcanias, N. (1982). Structure and Smith-MacMillan form of a rational matrix at infinity, International Journal of Control 35(4): 701-725.10.1080/00207178208922649
  64. Varga, A. (1998). Computation of inner-outer factorization of rational matrices, IEEE Transactions on Automatic Control 43(5): 684-688.10.1109/9.668836
  65. Varga, A. (2001). Computing generalized inverse systems using matrix pencil methods, International Journal of Applied Mathematics and Computer Science 11(5): 1055-1068.
  66. Weierstrass, K. (1868). On the theory of bilinear and quadratic forms, Monatsbericht der Preussischen Akademie der Wissenschaften, reprinted in Mathematische Werke von Karl Weierstrass, Vol. II, 1985, Mayer & Müller, Berlin, pp. 310-338, (in German).
  67. Wilkinson, J. H. (1979). Kronecker's canonical form and the QZ-algorithm, Linear Algebra and Its Applications 28: 285-303.10.1016/0024-3795(79)90140-X
DOI: https://doi.org/10.2478/v10006-011-0012-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 161 - 172
Published on: Mar 28, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Klaus Röbenack, Kurt Reinschke, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 1 (March 2011)