Have a personal or library account? Click to login
Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system Cover

Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system

Open Access
|Mar 2011

References

  1. Al-Holou, N., Lahdhiri, T., Joo, D. S., Weaver, J. and Al-Abbas, F. (2002). Sliding mode neural network inference fuzzy logic control for active suspension system, IEEE Transactions on Fuzzy Systems 10(2): 234-245.10.1109/91.995124
  2. Biglarbegian, M., Melek, W. and Golnaraghi, F. (2008). A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems, Vehicle System Dynamics 46(8): 691-711.10.1080/00423110701585420
  3. Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science 17(2): 233-248, DOI: 10.2478/v10006-007-0021-4.10.2478/v10006-007-0021-4
  4. Boutalis, Y. S. (2004). Neural network approaches for feedback linearization, Journal of Control Engineering and Applied Informatics 6(1): 15-26.
  5. Buckner, G. D., Schuetze, K. T. and Beno, J. H. (2001). Intelligent feedback linearization for active vehicle suspension control, Journal of Dynamic Systems, Measurement and Control: Transactions of ASME 123(4): 727-733.10.1115/1.1408945
  6. Cao, J., Liu, H., Li, P. and Brown, D. (2008). State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies, IEEE Transactions of Intelligent Transportation Systems 9(3): 392-405.10.1109/TITS.2008.928244
  7. Chantranuwathana, S. and Peng, H. (2004). Adaptive robust force control for vehicle active suspension, International Journal of Adaptive Control and Signal Processing 18(2): 83-102.10.1002/acs.783
  8. Christophe, L., Swevers, J. and Sas, P. (2005). Robust linear control of an active suspension on a quarter car test-rig, Control Engineering Practice 13(5): 577-586.10.1016/j.conengprac.2004.04.018
  9. Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2009). Neural network-based model predictive control of a servo-hydraulic vehicle suspension system, Proceedings of 2009 IEEE AFRICON, Nairobi, Kenya, pp. 1-6, DOI: 10.1109/AFRCON.2009.5308111.10.1109/AFRCON.2009.5308111
  10. Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2010a). Neural network-based PID control of a servo-hydraulic vehicle suspension system, Proceedings of the 7th South African Conference on Computational and Applied Mechanics (SACAM10), Pretoria, South Africa, pp. 1-6.
  11. Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2010b). System identification and neural network based PID control of servo-hydraulic vehicle suspension system, SAIEE Africa Research Journal 101(3): 93-105.10.23919/SAIEE.2010.8531554
  12. D'Amato, F. J. and Viassolo, D. E. (2000). Fuzzy control for active suspensions, Mechatronics 10(1): 897-920.10.1016/S0957-4158(99)00079-3
  13. Deng, J., Becerra, V. M. and Stobart, R. (2009). Input constraints handling in an MPC/feedback linearization scheme, International Journal of Applied Mathematics and Computer Science 19(2): 219-232, DOI: 10.2478/v10006-009-0018-2.10.2478/v10006-009-0018-2
  14. Du, H. and Zhang, N. (2008). Multiobjective static output feedback control design for vehicle suspensions, Journal of System Design and Dynamics 2(1): 228-239.10.1299/jsdd.2.228
  15. Du, H. and Zhang, N. (2009). Static output feedback control for electrohydraulic active suspensions via T-S fuzzy model approach, Journal of Dynamic Systems, Measurement and Control: Transactions of ASME 131(5): 051004-1-051004-11.10.1115/1.3117194
  16. Ehtiwesh, I. A. S. and Dorovic, Z. (2009). Comparative analysis of different control strategies for electro-hydraulic servo systems, Proceedings of the World Academy of Science, Engineering and Technology 56(6): 906-909.
  17. Eski, I. and Yildrim, S. (2009). Vibration control of vehicle active suspension system using a new robust neural network control system, Simulation Modelling Practice and Theory 17(5): 778-793.10.1016/j.simpat.2009.01.004
  18. Fallah, M. S., Bhat, R. and Xie, W. (2009). H∞ robust control of active suspensions: A practical point of view, Proceedings of the 2009 American Control Conference, St Louis, MO, USA, pp. 1385-1390.
  19. Feng, J. Z., Li, J. and Yu, F. (2003). GA-based PID and fuzzy logic control for active vehicle suspension system, International Journal of Automotive Technology 4(4): 181-191.
  20. Fiahlo, I. and Balas, G. J. (2002). Road adaptive active suspension using linear parameter-varying gain-scheduling, IEEE Transactions on Control Systems Technology 10(1): 43-54.10.1109/87.974337
  21. Gao, B., Tilley, D. G., Williams, R. A., Bean, A. and Donahue, J. (2006). Control of hydropneumatic active suspension based on a non-linear quarter-car model, Proceedings of the Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 220(1): 75-31.10.1243/095965105X77501
  22. Gao, Z. (2002). From linear to nonlinear control means: A practical progression, ISA Transactions 41(2): 177-189.10.1016/S0019-0578(07)60077-9
  23. Garces, F. R., Becerra, V. M., Kambhampti, C. and Warwick, K. (2003). Strategies for Feedback Linearisation: A Dynamic Neural Network Approach, Springer, London.10.1007/978-1-4471-0065-2
  24. Gaspar, P., Szaszi, I. and Bokor, J. (2003). Active suspension design using linear parameter varying control, International Journal of Autonomous Systems 1(2): 206-221.10.1504/IJVAS.2003.003539
  25. Goodwin, G. C., Rojas, O. and Takata, H. (2001). Nonlinear control via generalized feedback linearization using neural networks, Asian Journal of Control 3(2): 79-88.10.1111/j.1934-6093.2001.tb00047.x
  26. Hada, M. K., Menon A. and Bhave S. Y. (2007). Optimisation of an active suspension force controller using genetic algorithm for random input, Defence Science Journal 57(5): 691-706.10.14429/dsj.57.1806
  27. Hagan, M. T. and Demuth, H. B. (1999). Neural networks for control, American Control Conference, San Diego, CA, USA, pp. 1642-1656.
  28. Hassanzadeh, I., Alizadeh, G., Shiirjoposht, N. P. and Hashemzadeh, F. (2010). A new optimal nonlinear approach to half car active suspension control, IACSIT International Journal of Engineering and Technology 2(1): 78-84.10.7763/IJET.2010.V2.104
  29. He, Y. and McPhee, J. (2005). A design methodology for mechatronic vehicles: Application of multidisciplinary optimization, multibody dynamics and genetic algorithms, Vehicle Systems Dynamics 43(10): 697-733.10.1080/00423110500151077
  30. Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications, Automatica 33(10): 1781-1817.10.1016/S0005-1098(97)00101-5
  31. Isidori, A. (1989). Nonlinear Control System, Springer-Verlag, Berlin.10.1007/978-3-662-02581-9
  32. Jelali, M. and Kroll, A. (2003). Hydraulic Servo-Systems: Modelling, Identification and Control, Springer-Verlag, London.10.1007/978-1-4471-0099-7
  33. Jin, Y. and Yu, D. J. (2008). Adaptive neuron control using an integrated error approach with application to active suspensions, International Journal of Automotive Technology 9(3): 329-335.10.1007/s12239-008-0040-7
  34. Kar, I. and Behera, L. (2009). Direct adaptive neural control for affine nonlinear systems, Applied Soft Computing 9(2): 756-764.10.1016/j.asoc.2008.10.001
  35. Koshkouei, A. J. and Burnham, K. J. (2008). Sliding mode controllers for active suspensions, Proceedings of the 17th IFAC World Congress, COEX, Seoul, Korea, pp. 1-6.
  36. Kumar, M. S. (2008). Development of active suspension system for automobiles using PID controller, Proceedings of the World Congress on Engineering, WCE 2008, London, UK, pp. 1472-1477.
  37. Kumar, M. S. and Vijayarangan, S. (2007). Analytical and experimental studies on active suspension system of light passenger vehicle to improve ride comfort, Mechanika 65(3): 34-41.
  38. Kuo, Y. and Li, T. S. (1999). GA-based fuzzy PI/PD controller for automotive active suspension system, IEEE Transactions on Industrial Electronics 46(6): 88-100.10.1109/41.807984
  39. Lufty, O. F., Noor, S. B. M., Marhaban, M. H. and Abbas, K. A. (2009). A geneticatlly trained adaptive neuro-fuzzy inference system network utilized as a PID-like feedback controller for non-linear systems, Proceedings of the Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 223(3): 289-429.10.1243/09596518JSCE683
  40. Nakkarat, P. and Kuntanapreeda, S. (2009). Observer-based backstepping force control of an electrohydraulic actuator, Control Engineering Practice 17(8): 895-902.10.1016/j.conengprac.2009.02.011
  41. Norgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K. (2003). Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner's Handbook, Springer, Boston, MA.
  42. O'Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules, Imperial College Press, London.10.1142/p424
  43. Pedro, J. O. (2003). Design and performance of an active vehicle suspension system, Proceedings of the 2nd International Conference on Applied Mechanics and Materials, ICAMM 2003, Durban, South Africa, pp. 203-209.
  44. Pedro, J. O. (2007). H2-LQG/LTR controller design for active suspension systems, R and D Journal of the South African Institution of Mechanical Engineering 23(2): 32-41.
  45. Pedro, J. O. and Mgwenya, T. R. (2004). LQR control of a full - car active suspension with actuator dynamics, Proceedings of the 4th South African Conference on Applied Mechanics, SACAM'04, Johannesburg, South Africa, pp. 1-9.
  46. Poursamad, A. (2009). Adaptive feedback linearization control of antilock braking system using neural networks, Mechatronics 19(5): 767-773.10.1016/j.mechatronics.2009.03.003
  47. Poussot-Vassal, C., Sename, O., Dugard, L., Gaspar, P., Szabo, Z. and Bokor, J. (2006). Multi-objective qLPV H∞/H2 control of a half vehicle, Proceedings of the 10th MINI Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, Hungary, pp. 1-6.
  48. Ryu, S., Kim, Y. and Park, Y. (2008). Robust H∞ preview control of an active suspension system with norm-bounded uncertainties, International Journal of Automotive Technology 9(5): 585-592.10.1007/s12239-008-0069-7
  49. Salem, A. A. A. and Aly, A. A. (2009). Fuzzy control of a quarter-car suspension systems, Proceedings of the World Academy of Science, Engineering and Technology (53): 258-263.
  50. Seo, J., Venugopal, R. and Kenne, J. (2007). Feedback linearization based control of a rotational hydraulic drive, Control Engineering Practice 15(12): 1495-1507.10.1016/j.conengprac.2007.02.009
  51. Sharkawy, A. B. (2005). Fuzzy and adaptive fuzzy control for the automobiles' active suspension system, Vehicle Systems Dynamics 43(10): 795-806.10.1080/00423110500097783
  52. Shen, X. and Peng, H. (2003). Analysis of active suspension systems with hydraulic actuators, Proceedings of the 2003 IAVSD Conference, Atsuigi, Japan, pp. 1-10.
  53. Shi, J., Li, X. W. and Zhang, J. W. (2010). Feedback linearization and sliding mode control for active hydropneumatic suspension of a special-purpose vehicle, Proceedings of the Institute of Mechanical Engineers, Part D: Journal of Automobile Engineering 211(3): 171-181.
  54. Shirahatt, A., Prasad, P. S. S., Panzade, P. and Kulkarni, M. M. (2008). Optimal design of passenger car suspension for ride and road holding, Journal of the Brazillian Society of Mechanical Science and Engineering 30(1): 66-76.10.1590/S1678-58782008000100010
  55. He, S., Reif, K. and Unbehauen, R. (1998). A neural approach for control of nonlinear systems with feedback linearization, Control Engineering Practice 9(6): 1409-1421.10.1109/72.728391
  56. Slotine, J. J. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ.
  57. Yagiz, N., Sakman, L. E. and Guclu, R. (2008). Different control applications on a vehicle using fuzzy logic control, Sadhana 33(1): 15-25.10.1007/s12046-008-0002-9
  58. Yesildirek, A. and Lewis, F. L. (1995). Feedback linearization using neural networks, Automatica 31(11): 1659-1664.10.1016/0005-1098(95)00078-B
  59. Yoshimura, T. and Teramura, I. (2005). Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer, Journal of Zhejiang University: Science 6A(4): 251-256.10.1631/jzus.2005.A0251
DOI: https://doi.org/10.2478/v10006-011-0010-5 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 137 - 147
Published on: Mar 28, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Jimoh Pedro, Olurotimi Dahunsi, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 1 (March 2011)