Have a personal or library account? Click to login
Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays Cover

Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays

By: Changjin Xu,  Maoxin Liao and  Xiaofei He  
Open Access
|Mar 2011

References

  1. Bhattacharyya, R. and Mukhopadhyay, B. (2006). Spatial dynamics of nonlinear prey-predator models with prey migration and predator switching, Ecological Complexity 3(2): 160-169.10.1016/j.ecocom.2006.01.001
  2. Faria, T. (2001). Stability and bifurcation for a delayed predatorprey model and the effect of diffusion, Journal of Mathematical Analysis and Applications 254(2): 433-463.10.1006/jmaa.2000.7182
  3. Gao, S. J., Chen, L. S. and Teng, Z. D. (2008). Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator, Applied Mathematics and Computation 202(2): 721-729.10.1016/j.amc.2008.03.011
  4. Hale, J. (1977). Theory of Functional Differential Equations, Springer-Verlag, Berlin.10.1007/978-1-4612-9892-2
  5. Hassard, B., Kazarino, D. and Wan, Y. (1981). Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge.
  6. Kar, T. and Pahari, U. (2007). Modelling and analysis of a preypredator system stage-structure and harvesting, Nonlinear Analysis: Real World Applications 8(2): 601-609.10.1016/j.nonrwa.2006.01.004
  7. Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.
  8. Kuang, Y. (1993). Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, MA.
  9. Kuang, Y. and Takeuchi, Y. (1994). Predator-prey dynamics in models of prey dispersal in two-patch environments, Mathematical Biosciences 120(1): 77-98.10.1016/0025-5564(94)90038-8
  10. Li, K. and Wei, J. (2009). Stability and Hopf bifurcation analysis of a prey-predator system with two delays, Chaos, Solitons & Fractals 42(5): 2603-2613.10.1016/j.chaos.2009.04.001
  11. May, R. M. (1973). Time delay versus stability in population models with two and three trophic levels, Ecology 4(2): 315-325.10.2307/1934339
  12. Prajneshu Holgate, P. (1987). A prey-predator model with switching effect, Journal of Theoretical Biology 125(1): 61-66.10.1016/S0022-5193(87)80179-0
  13. Ruan, S. and Wei, J. (2003). On the zero of some transcendential functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete and Impulsive Systems Series A 10(1): 863-874.
  14. Song, Y. L. and Wei, J. (2005). Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Journal of Mathematical Analysis and Applications 301(1): 1-21.10.1016/j.jmaa.2004.06.056
  15. Teramoto, E. I., Kawasaki, K. and Shigesada, N. (1979). Switching effects of predaption on competitive prey species, Journal of Theoretical Biology 79(3): 303-315.10.1016/0022-5193(79)90348-5
  16. Xu, R., Chaplain, M. A. J. and Davidson F. A. (2004). Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments, Nonlinear Analysis: Real World Applications 5(1): 183-206.10.1016/S1468-1218(03)00032-4
  17. Xu, R. and Ma, Z. E. (2008). Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure, Chaos, Solitons & Fractals 38(3): 669-684.10.1016/j.chaos.2007.01.019
  18. Yan, X. P. and Li, W. T. (2006). Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Applied Mathematics and Computation 177(1): 427-445.10.1016/j.amc.2005.11.020
  19. Yan, X. P. and Zhang, C. H. (2008). Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Analysis: Real World Applications 9(1): 114-127.10.1016/j.nonrwa.2006.09.007
  20. Zhou, X. Y., Shi, X. Y. and Song, X. Y. (2008). Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay, Applied Mathematics and Computation 196(1): 129-136.10.1016/j.amc.2007.05.041
DOI: https://doi.org/10.2478/v10006-011-0007-0 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 97 - 107
Published on: Mar 28, 2011
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Changjin Xu, Maoxin Liao, Xiaofei He, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 1 (March 2011)