Have a personal or library account? Click to login
Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem Cover

Application of agent-based simulated annealing and tabu search procedures to solving the data reduction problem

Open Access
|Mar 2011

References

  1. Aarts, E. and van Laarhoven, P. (1987). Simulated anealing: A pedestrian review of the theory and some applications, in J. Kittler and P. A. Devijver (Eds.), Pattern Recognition and Applications, Springer-Verlag, Berlin.
  2. Aha, D., Kibler, D. and Albert, M. (1999). Instance-based learning algorithms, Machine Learning 6(1): 37-66.10.1007/BF00153759
  3. Aksela, M. (2007). Adaptive Combinations of Classifiers with Application to On-line Handwritten Character Recognition, Ph.D. thesis, Helsinki University of Technology, Helsinki.
  4. Asuncion, A. and Newman, D. (2007). Website of the UCI Machine Learning Repository http://archive.ics.uci.edu/ml/
  5. Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E. and Wierzbowska, I. (2009). e-JABAT—An implementation of the Web-based A-Team, in N. Nguyen and L. Jain (Eds.), Intelligent Agents in the Evolution of Web and Applications, Studies in Computational Intelligence, Vol. 167, Springer-Verlag, Berlin/Heidelberg, pp. 57-86.10.1007/978-3-540-88071-4_4
  6. Bellifemine, F., Caire, G., Poggi A. and Rimassa, G. (2003). Jade. A white paper, Technical Report Exp, 3(3), September 2003, pp. 6-19 http://exp.telecomitalialab.com
  7. Bezdek, J. and Kuncheva, L. (2001). Nearest prototype classifier designs: An experimental study, International Journal of Intelligent Systems 16(2): 1445-1473.10.1002/int.1068
  8. Bhanu, B. and Peng, J. (2000). Adaptive integration image segmentation and object recognition, IEEE Transactions on Systems, Man and Cybernetics 30(4): 427-44.10.1109/5326.897070
  9. Bull, L. (2004). Learning classifier systems: A brief introduction, in L. Bull (Ed.), Applications of Learning Classifier Systems, Studies in Fuzziness and Soft Computing, Springer, Berlin, pp. 3-14.10.1007/978-3-540-39925-4_1
  10. Czarnowski, I. (2010). Prototype selection algorithms for distributed learning, Pattern Recognition 43(6): 2292-2300.10.1016/j.patcog.2010.01.006
  11. Czarnowski, I. and Jędrzejowicz, P. (2004). An approach to instance reduction in supervised learning, in F. Coenen, A. Preece and A. Macintosh (Eds.), Research and Development in Intelligent Systems XX, Springer, London, pp. 267-282.10.1007/978-0-85729-412-8_20
  12. Czarnowski, I. and Jędrzejowicz, P. (2010). An approach to data reduction and integrated machine classification, New Generation Computing 28(1): 21-40.10.1007/s00354-008-0073-5
  13. Dash, M. and Liu, H. (1997). Feature selection for classification, Intelligence Data Analysis 1(3): 131-156.10.3233/IDA-1997-1302
  14. DataSet, C. (2009). Website of the Datasets Used for Classification: Comparison of Results http://www.is.umk.pl/projects/datasets.html
  15. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association 32(200): 675-701.10.1080/01621459.1937.10503522
  16. Glover, F. (1989). Tabu search, Part I, ORSA Journal on Computing 1(3): 533-549.10.1287/ijoc.1.3.190
  17. Glover, F. (1990). Tabu search, Part II, ORSA Journal on Computing 2(1): 4-32.10.1287/ijoc.2.1.4
  18. Glover, F. and Laguna, M. (1993). Tabu search, in C. Reeves (Ed.), Modern Heuristic Techniques for Combinatorial Problems, John Wiley and Sons, New Jork, NY, pp. 70-150.
  19. Hamo, Y. and Markovitch, S. (2005). The COMPSET algorithm for subset selection, Proceedings of the 19th International Joint Conference for Artificial Intelligence, Edinburgh, UK, pp. 728-733.
  20. Hart, P. (1968). The condensed nearest neighbour rule, IEEE Transactions on Information Theory 14: 515-516.10.1109/TIT.1968.1054155
  21. Jędrzejowicz, P. (1999). Social learning algorithm as a tool for solving some difficult scheduling problems, Foundation of Computing and Decision Sciences 24(2): 51-66.
  22. Kim, S.-W. and Oommen, B. (2003). A brief taxonomy and ranking of creative prototype reduction schemes, Pattern Analysis Application 6(3): 232-244.10.1007/s10044-003-0191-0
  23. Kirkpatrick, S., Gelatt, C. and Vecci, M. (1983). Optimisation by simulated annealing, Science 220(4598): 671-680.10.1126/science.220.4598.671
  24. Kohavi, R. and John, G. (1997). Wrappers for feature subset selection, Artificial Intelligence 97(1-2): 273-324.10.1016/S0004-3702(97)00043-X
  25. Kuncheva, L. and Bezdek, J. (1998). Nearest prototype classification: Clustering, genetic algorithm or random search?, IEEE Transactions on Systems, Man and Cybernetics 28(1): 160-164.10.1109/5326.661099
  26. Kuncheva, L. and Jain, L. (1999). Nearest-neighbor classifier: Simultaneous editing and feature selection, Pattern Recognition Letters 20(11-13): 1149-1156.10.1016/S0167-8655(99)00082-3
  27. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin.10.1007/978-3-662-03315-9
  28. Nanni, L. and Lumini, A. (2009). Particle swarm optimization for prototype reduction, Neurocomputing 72(4-6): 1092-1097.10.1016/j.neucom.2008.03.008
  29. Quinlan, J. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA.
  30. Raman, B. (2003). Enhancing learning using feature and example selection, Technical report, Texas AM University, College Station, TX.
  31. Ritter, G., Woodruff, H., Lowry, S. and Isenhour, T. (1975). An algorithm for a selective nearest decision rule, IEEE Transactions on Information Theory 21(6): 665-669.10.1109/TIT.1975.1055464
  32. Rozsypal, A. and Kubat, M. (2003). Selecting representative examples and attributes by a genetic algorithm, Intelligent Data Analysis 7(4): 291-304.10.3233/IDA-2003-7403
  33. Sahel, Z., Bouchachia, A., Gabrys, B. and Rogers, P. (2007). Adaptive mechanisms for classification problems with drifting data, in B. Apolloni, R. Howlett and L. Jain (Eds.), KES 2007, Lecture Notes in Artificial Intelligence, Vol. 4693, Springer-Verlag, Berlin/Heidelberg, pp. 419-426.10.1007/978-3-540-74827-4_53
  34. Skalak, D. (1994). Prototype and feature selection by sampling and random mutation hill climbing algorithm, Proceedings of the International Conference on Machine Learning, New Brunswick, NJ, USA, pp. 293-301.
  35. Song, H. and Lee, S. (1996). LVQ combined with simulated annealing for optimal design of large set reference models, Neural Networks 9(2): 329-336.10.1016/0893-6080(95)00022-4
  36. Talukdar, S., Baerentzen, L., Gove, A. and de Souza, P. (1996). Asynchronous teams: Co-operation schemes for autonomous, computer-based agents, Technical Report TR EDRC 18-59-96, Carnegie Mellon University, Pittsburgh, PA.
  37. Wilson, D. and Martinez, T. (2000a). An integrated instancebased learning algorithm, Computational Intelligence 16(1): 1-28.10.1111/0824-7935.00103
  38. Wilson, D. and Martinez, T. (2000b). Reduction techniques for instance-based learning algorithm, Machine Learning 33(3): 257-286.10.1023/A:1007626913721
  39. Zongker, D. and Jain, A. (1996). Algorithm for feature selection: An evaluation, Proceedings of the International Conference on Pattern Recognition, ICPR96, Vienna, Austria, pp. 18-22.
DOI: https://doi.org/10.2478/v10006-011-0004-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 57 - 68
Published on: Mar 28, 2011
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2011 Ireneusz Czarnowski, Piotr Jędrzejowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 21 (2011): Issue 1 (March 2011)