Have a personal or library account? Click to login
Markov chain model of phytoplankton dynamics Cover

References

  1. Adler, R. (1997). Superprocesses and plankton dynamics, Monte Carlo Simulation in Oceanography: Proceedings of the ‘Aha Huliko'a Hawaiian Winter Workshop, Manoa, HI, pp. 121-128.
  2. Aldous, D. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli 5(1): 3-48.10.2307/3318611
  3. Arino, O. and Rudnicki, R. (2004). Phytoplankton dynamics, Comptes Rendus Biologies 327(11): 961-969.10.1016/j.crvi.2004.03.013
  4. Clark, P. and Evans, F. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations, Ecology 35(4): 445-453.10.2307/1931034
  5. El Saadi, N. and Bah, A. (2007). An individual-based model for studying the aggregation behavior in phytoplankton, Ecological Modelling 204(1-2): 193-212.10.1016/j.ecolmodel.2007.01.003
  6. Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, NY.
  7. Franks, P. J. S. (2002). NPZ models of plankton dynamics: Their construction, coupling to physics, and application, Journal of Oceanography 58(2): 379-387.10.1023/A:1015874028196
  8. Henderson, P. A. (2003). Practical Methods in Ecology, Wiley-Blackwell, Malden, MA.
  9. Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns, John Wiley & Sons Ltd, Chichester.10.1002/9780470725160
  10. Jackson, G. (1990). A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Research 37(8): 1197-1211.10.1016/0198-0149(90)90038-W
  11. Laurençot, P. and Mischler, S. (2002). The continuous coagulation-fragmentation equations with diffusion, Archive for Rational Mechanics and Analysis 162(1): 45-99.10.1007/s002050100186
  12. Levin, S. A. and Segel, L. A. (1976). Hypothesis for origin of planktonic patchiness, Nature 259.10.1038/259659a0
  13. Passow, U. and Alldredge, A. (1995). Aggregation of a diatom bloom in a mesocosm: The role of transparent exopolymer particles (TEP), Deep-Sea Research II 42(1): 99-109.10.1016/0967-0645(95)00006-C
  14. Rudnicki, R. and Wieczorek, R. (2006a). Fragmentation-coagulation models of phytoplankton, Bulletin of the Polish Academy of Sciences: Mathematics 54(2): 175-191.10.4064/ba54-2-9
  15. Rudnicki, R. and Wieczorek, R. (2006b). Phytoplankton dynamics: from the behaviour of cells to a transport equation, Mathematical Modelling of Natural Phenomena 1(1): 83-100.10.1051/mmnp:2006005
  16. Rudnicki, R. and Wieczorek, R. (2008). Mathematical models of phytoplankton dynamics, Dynamic Biochemistry, Process Biotechnology and Molecular Biology 2 (1): 55-63.
  17. Wieczorek, R. (2007). Fragmentation, coagulation and diffusion processes as limits of individual-based aggregation models, Ph.D. thesis, Institute of Mathematics, Polish Academy of Sciences, Warsaw, (in Polish).
  18. Young, W., Roberts, A. and Stuhne, G. (2001). Reproductive pair correlations and the clustering of organisms, Nature 412(6844): 328-331.10.1038/3508556111460162
DOI: https://doi.org/10.2478/v10006-010-0058-7 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 763 - 771
Published on: Dec 20, 2010
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Radosław Wieczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 4 (December 2010)