Have a personal or library account? Click to login
Ultra regular covering space and its automorphism group Cover
By: Sang-Eon Han  
Open Access
|Dec 2010

References

  1. Boxer, L. (1999). A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10(1): 51-62.10.1023/A:1008370600456
  2. Boxer, L. (2006). Digital products, wedge, and covering spaces, Journal of Mathematical Imaging and Vision 25(2): 159-171.10.1007/s10851-006-9698-5
  3. Boxer, L. and Karaca, I. (2008). The classification of digital covering spaces, Journal of Mathematical Imaging and Vision 32(1): 23-29.10.1007/s10851-008-0088-z
  4. Han, S. E. (2003). Computer topology and its applications, Honam Mathematical Journal 25(1): 153-162.
  5. Han, S. E. (2005a). Algorithm for discriminating digital images w.r.t. a digital (k0, k1)-homeomorphism, Journal of Applied Mathematics and Computing 18(1-2): 505-512.
  6. Han, S. E. (2005b). Digital coverings and their applications, Journal of Applied Mathematics and Computing 18(1-2): 487-495.
  7. Han, S. E. (2005c). Non-product property of the digital fundamental group, Information Sciences 171 (1-3): 73-91.10.1016/j.ins.2004.03.018
  8. Han, S. E. (2005d). On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1): 115-129.
  9. Han, S. E. (2006a). Connected sum of digital closed surfaces, Information Sciences 176(3): 332-348.10.1016/j.ins.2004.11.003
  10. Han, S. E. (2006b). Discrete Homotopy of a Closed k-Surface, Lecture Notes in Computer Science, Vol. 4040, Springer-Verlag, Berlin, pp. 214-225.
  11. Han, S. E. (2006c). Erratum to "Non-product property of the digital fundamental group", Information Sciences 176(1): 215-216.10.1016/j.ins.2005.03.014
  12. Han, S. E. (2006d). Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2): 120-134.10.1016/j.ins.2005.01.002
  13. Han, S. E. (2007a). Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6): 1479-1503.10.4134/JKMS.2007.44.6.1479
  14. Han, S. E. (2007b). The k-fundamental group of a closed ksurface, Information Sciences 177(18): 3731-3748.10.1016/j.ins.2007.02.031
  15. Han, S. E. (2008a). Comparison among digital fundamental groups and its applications, Information Sciences 178(8): 2091-2104.10.1016/j.ins.2007.11.030
  16. Han, S. E. (2008b). Equivalent (k0, k1)-covering and generalized digital lifting, Information Sciences 178(2): 550-561.10.1016/j.ins.2007.02.004
  17. Han, S. E. (2008c). Map preserving local properties of a digital image, Acta Applicandae Mathematicae 104(2): 177-190.10.1007/s10440-008-9250-2
  18. Han, S. E. (2008d). The k-homotopic thinning and a torus-like digital image in Zn, Journal of Mathematical Imaging and Vision 31(1): 1-16.10.1007/s10851-007-0061-2
  19. Han, S. E. (2009a). Cartesian product of the universal covering property, Acta Applicandae Mathematicae 108(2): 363-383.10.1007/s10440-008-9316-1
  20. Han, S. E. (2009b). Regural covering space in digital covering theory and its applications, Honam Mathematical Journal 31(3): 279-292.10.5831/HMJ.2009.31.3.279
  21. Han, S. E. (2009c). Remark on a generalized universal covering space, Honam Mathematical Journal 31(3): 267-278.10.5831/HMJ.2009.31.3.267
  22. Han, S. E. (2010a). Existence problem of a generalized universal covering space, Acta Applicandae Mathematicae 109(3): 805-827.10.1007/s10440-008-9347-7
  23. Han, S. E. (2010b). Multiplicative property of the digital fundamental group, Acta Applicandae Mathematicae 110(2): 921-944.10.1007/s10440-009-9486-5
  24. Han, S. E. (2010c). KD-(k0, k1)-homotopy equivalence and its applications, Journal of the Korean Mathematical Society 47(5): 1031-1054.10.4134/JKMS.2010.47.5.1031
  25. Han, S. E. (2010d). Properties of a digital covering space and discrete Deck's transformation group, The IMA Journal of Applied Mathematics, (submitted).
  26. Khalimsky, E. (1987). Motion, deformation, and homotopy in finite spaces, Proceedings of IEEE International Conferences on Systems, Man, and Cybernetics, pp. 227-234.
  27. Kim I.-S., and Han, S. E. (2008). Digital covering theory and its applications, Honam Mathematical Journal 30(4): 589-602.10.5831/HMJ.2008.30.4.589
  28. Kong, T. Y. and Rosenfeld, A. (1996). Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam.
  29. Malgouyres, R. and Lenoir, A. (2000). Topology preservation within digital surfaces, Graphical Models 62(2): 71-84.10.1006/gmod.1999.0517
  30. Massey, W. S. (1977). Algebraic Topology, Springer-Verlag, New York, NY.
  31. Rosenfeld, A. (1979). Digital topology, American Mathematical Monthly 86: 76-87.10.1016/S0019-9958(79)90353-X
  32. Rosenfeld, A. and Klette, R. (2003). Digital geometry, Information Sciences 148: 123-127.10.1016/S0020-0255(02)00284-0
  33. Spanier, E. H. (1966). Algebraic Topology, McGraw-Hill Inc., New York, NY.
DOI: https://doi.org/10.2478/v10006-010-0053-z | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 699 - 710
Published on: Dec 20, 2010
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Sang-Eon Han, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 4 (December 2010)