Have a personal or library account? Click to login
Robust stability of positive continuous-time linear systems with delays Cover

Robust stability of positive continuous-time linear systems with delays

Open Access
|Dec 2010

References

  1. Bhattacharyya, S. P., Chapellat, H. and Keel, L. H. (1995). Robust Control: The Parametric Approach, Prentice Hall, New York, NY.10.1016/B978-0-08-042230-5.50016-5
  2. Busłowicz, M. (2000). Robust Stability of Dynamical Linear Stationary Systems with Delays, Publishing Department of the Technical University of Białystok, Białystok, (in Polish).
  3. Busłowicz, M. (2008a). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 325-328.
  4. Busłowicz, M. (2008b). Simple conditions for robust stability of linear positive discrete-time systems with one delay, Journal of Automation, Mobile Robotics and Intelligent Systems 2(2): 18-22.
  5. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems; Theory and Applications, J. Wiley, New York, NY.
  6. Górecki, H. and Korytowski, A. (Eds.) (1993). Advances in Optimization and Stability Analysis of Dynamical Systems, Publishing Department of the University of Mining and Metallurgy, Cracow.
  7. Gu, K., Kharitonov, K. L. and Chen, J. (2003). Stability of Time-Delay Systems, Birkhäuser, Boston, MA.10.1007/978-1-4612-0039-0
  8. Gu, K. and Niculescu, S. I. (2006). Stability Analysis of Timedelay Systems: A Lyapunov Approach, Springer-Verlag, London.
  9. Hmamed, A., Benzaouia, A., Rami, M. A. and Tadeo, F. (2007). Positive stabilization of discrete-time systems with unknown delay and bounded controls, Proceedings of the European Control Conference, Kos, Greece, pp. 5616-5622, (paper ThD07.3).
  10. Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  11. Kaczorek, T. (2009). Stability of positive continuous-time linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 395-398.10.2478/v10175-010-0143-y
  12. Niculescu, S.-I. (2001). Delay Effects on Stability. A Robust Control Approach, Springer-Verlag, London.
  13. Rami, M. A., Helmke, U. and Tadeo, F. (2007). Positive observation problem for linear positive systems, Proceedings of the Mediterranean Conference on Control and Automation, Athens, Greece, (paper T19-027).
  14. Wu, M., He. Y., She J.-A., and Liu G.-P. (2004). Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40(8): 1435-1439.10.1016/j.automatica.2004.03.004
DOI: https://doi.org/10.2478/v10006-010-0049-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 665 - 670
Published on: Dec 20, 2010
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Mikołaj Busłowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 4 (December 2010)