Have a personal or library account? Click to login
On-line wavelet estimation of Hammerstein system nonlinearity Cover
Open Access
|Sep 2010

References

  1. Billings, S. A. and Fakhouri, S. Y. (1978). Theory of separable processes with application to the identification of non-linear systems, Proceedings of IEE 125(10): 1051-1058.10.1049/piee.1978.0241
  2. Capobianco, E. (2002). Hammerstein system representation of financial volatility processes, The European Physical Journal B—Condensed Matter 27(2): 201-211.10.1140/epjb/e20020154
  3. Chen, H.-F. (2004). Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEE Transactions on Automatic Control 49(10): 1641-1649.10.1109/TAC.2004.835358
  4. Chen, H.-F. (2005). Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewise-linear memoryless block, IEEE Transactions on Automatic Control 50(10): 1612-1617.10.1109/TAC.2005.856658
  5. Chen, S., Billings, S. A. and Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control 50(5): 1873-1896.10.1080/00207178908953472
  6. Coca, D. and Billings, S. A. (2001). Non-linear system identification using wavelet multiresolution models, International Journal of Control 74(18): 1718-1736.10.1080/00207170110089743
  7. Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia, PA.10.1137/1.9781611970104
  8. Donoho, D. L. (1993). Unconditional bases are optimal bases for data compression and for statistical estimation, Applied and Computational Harmonic Analysis 1(1): 100-115.10.1006/acha.1993.1008
  9. Donoho, D. L., Vetterli, M., DeVore, R. A. and Daubechies, I. (1998). Data compression and harmonic analysis, IEEE Transactions on Infromation Theory 44(6): 2435-2476.10.1109/18.720544
  10. Giannakis, G. B. and Serpedin, E. (2001). A bibliography on nonlinear system identification, Signal Processing 81(3): 533-580.10.1016/S0165-1684(00)00231-0
  11. Greblicki, W. (1989). Nonparametric orthogonal series identification of Hammerstein systems, International Journal of Systems Science 20(12): 2355-2367.10.1080/00207728908910318
  12. Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977-991.
  13. Greblicki, W. (2002). Stochastic approximation in nonparametric identification of Hammerstein systems, IEEE Transactions on Automatic Control 47(11): 1800-1810.10.1109/TAC.2002.804483
  14. Greblicki, W. and Pawlak, M. (1985). Fourier and Hermite series estimates of regression function, Annals of the Institute of Statistical Mathematics 37(3): 443-454.10.1007/BF02481112
  15. Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein system using kernel regression estimates, IEEE Transactions on Automatic Control 31(1): 74-77.10.1109/TAC.1986.1104096
  16. Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems, Journal of the Franklin Institute 326(4): 461-481.10.1016/0016-0032(89)90045-8
  17. Greblicki, W. and Pawlak, M. (1994). Nonparametric recovering nonlinearities in block oriented systems with the help of Laguerre polynomials, Control—Theory and Advanced Technology 10(4): 771-791.
  18. Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY.10.1017/CBO9780511536687
  19. Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, NY.10.1007/b97848
  20. Haber, R. and Keviczky, L. (1999). Nonlinear System Parameter Identification, Kluwer Academic Publishers, Dordrecht/Boston/London.
  21. Hasiewicz, Z., Pawlak, M. and Śliwiński, P. (2005). Nonparametric identification of non-linearities in block-oriented complex systems by orthogonal wavelets with compact support, IEEE Transactions on Circuits and Systems I: Regular Papers 52(1): 427-442.10.1109/TCSI.2004.840288
  22. Hasiewicz, Z. and Śliwiński, P. (2002). Identification of nonlinear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, International Journal of Systems Science 33(14): 1121-1144.10.1080/0020772021000064171
  23. Hsu, K., Poolla, K. and Vincent, T. L. (2008). Identification of structured nonlinear systems, IEEE Transactions on Automatic Control 53(11): 2497-2513.10.1109/TAC.2008.2006928
  24. Jang, W. and Kim, G. (1994). Identification of loudspeaker nonlinearities using the NARMAX modelling technique, Journal of Audio Engineering Society 42(1/2): 50-59.
  25. Jyothi, S. N. and Chidambaram, M. (2000). Identification of Hammerstein model for bioreactors with input multiplicities, Bioprocess Engineering 23(4): 323-326.10.1007/s004499900141
  26. Kang, H. W., Cho, Y. S. and Youn, D. H. (1999). On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter, IEEE Transactions on Communications 47(4): 522-526.10.1109/26.764925
  27. Kukreja, S., Kearney, R. and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR, IEEE Transactions on Biomedical Engineering 52(3): 431-444.10.1109/TBME.2004.84328615759573
  28. Lang, Z. Q. (1997). A nonparametric polynomial identification algorithm for the Hammerstein system, IEEE Transactions on Automatic Control 42(2): 1435-1441.10.1109/9.633834
  29. Lortie, M. and Kearney, R. E. (2001). Identification of time-varying Hammerstein systems from ensemble data, Annals of Biomedical Engineering 29(2): 619-635.10.1114/1.138042111501626
  30. Mallat, S. G. (1998). A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA.10.1016/B978-012466606-1/50008-8
  31. Marmarelis, V. Z. (2004). Nonlinear Dynamic Modeling of Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley IEEE Press, Piscataway, NJ.10.1002/9780471679370
  32. Mzyk, G. (2007). Generalized kernel regression estimate for Hammerstein system identification, International Journal of Applied Mathematics and Computer Science 17(2): 101-109, DOI: 10.2478/v10006-007-0018-z.10.2478/v10006-007-0018-z
  33. Mzyk, G. (2009). Nonlinearity recovering in Hammerstein system from short measurement sequence, IEEE Signal Processing Letters 16(9): 762-765.10.1109/LSP.2009.2024795
  34. Nešić, D. and Mareels, I. M. Y. (1998). Dead-beat control of simple Hammerstein models, IEEE Transactions on Automatic Control 43(8): 1184-1188.10.1109/9.704998
  35. Niedźwiecki, M. (1988). Functional series modeling approach to identification of nonstationary stochastic systems, IEEE Transactions on Automatic Control 33(10): 955-961.10.1109/9.7254
  36. Nordsjo, A. and Zetterberg, L. (2001). Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processing 49(3): 577-592.10.1109/78.905884
  37. Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(9): 945-961.10.1109/81.721260
  38. Rutkowski, L. (1980). Sequential estimates of probability densities by orthogonal series and their application in pattern classification, IEEE Transactions on System, Man, and Cybernetics 10(12): 918-920.10.1109/TSMC.1980.4308422
  39. Rutkowski, L. (1982). On-line identification of time-varying systems by nonparametric techniques, IEEE Transactions on Automatic Control 27(1): 228-230.10.1109/TAC.1982.1102833
  40. Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on Neural Networks 15(3): 576-596.10.1109/TNN.2004.82612715384547
  41. Śliwiński, P. and Hasiewicz, Z. (2008). Computational algorithms for wavelet identification of nonlinearities in Hammerstein systems with random inputs, IEEE Transactions on Signal Processing 56(2): 846-851.10.1109/TSP.2007.907810
  42. Śliwiński, P. and Hasiewicz, Z. (2009). Recursive nonparametric estimation of Hammerstein system nonlinearity by Haar wavelet series, IEEE Transactions on Automatic Control, (submitted for review).
  43. Śliwiński, P., Hasiewicz, Z. and Wachel, P. (2007). On-line polynomial series estimates of Hammerstein system nonlinearities, Proceedings of the 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2007, Szczecin, Poland.
  44. Śliwiński, P., Rozenblit, J., Marcellin, M. W. and Klempous, R. (2009). Wavelet amendment of polynomial models in nonlinear system identification, IEEE Transactions on Automatic Control 54(4): 820-825.10.1109/TAC.2008.2009620
  45. Srinivasan, R., Rengaswamy, R., Narasimhan, S. and Miller, R. (2005). Control loop performance assessment: 2. Hammerstein model approach for stiction diagnosis, Industrial & Engineering Chemistry Research 44(17): 6719-6728.
  46. Stone, C. J. (1980). Optimal rates of convergence for nonparametric regression, Annals of Statistics 8(6): 1348-1360.10.1214/aos/1176345206
  47. Sureshbabu, N. and Farrell, J. A. (1999). Wavelet based system identification for non-linear control, IEEE Transactions on Automatic Control 44(2): 412-417.10.1109/9.746278
  48. Unser, M. (1999). Splines. A perfect fit for signal and image processing, IEEE Signal Processing Magazine 16(6): 22-38.
  49. Vörös, J. (2005). Identification of Hammerstein systems with time-varying piecewise-linear characteristics, IEEE Transactions on Circuits and Systems II: Express Briefs 52(12): 865-869.10.1109/TCSII.2005.853339
  50. Walter, G. G. and Shen, X. (2001). Wavelets and other orthogonal systems with applications, 2nd Edn., Chapman & Hall, Boca Raton, FL.
  51. Westwick, D. T. and Kearney, R. E. (2001). Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics, Annals of Biomedical Engineering 29(8): 707-718.10.1114/1.138580611556727
  52. Westwick, D. T. and Kearney, R. E. (2003). Identification of nonlinear physiological systems, IEEE Press Series on Biomedical Engineering, Wiley/IEEE Press, Piscataway, NJ.
  53. Zhao, W.-X. and Chen, H.-F. (2006). Recursive identification for Hammerstein system with ARX subsystem, IEEE Transactions on Automatic Control 51(12): 1966-1974.10.1109/TAC.2006.886502
DOI: https://doi.org/10.2478/v10006-010-0038-y | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 513 - 523
Published on: Sep 27, 2010
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Przemysław Śliwiński, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 3 (September 2010)