Have a personal or library account? Click to login
Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems Cover

Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems

Open Access
|Sep 2010

References

  1. Ansaklis, P. J. and Michel, N. (1997). Linear Systems, McGrow-Hill, New York, NY.
  2. Basile, G. and Marro, G. (1969). Controlled and conditioned invariant subspaces in linear system theory, Journal of Optimization Theory and Applications 3(5): 306-315.10.1007/BF00931370
  3. Basile, G. and Marro, G. (1982). Self-bounded controlled invariant subspaces: A straightforward approach to constrained controllability, Journal of Optimization Theory and Applications 38(1): 71-81.10.1007/BF00934323
  4. Conte, G. and Perdon, A. (1988). A geometric approach to the theory of 2-D systems, IEEE Transactions on Automatics Control AC-33(10): 946-950.10.1109/9.7251
  5. Conte, G., Perdon, A. and Kaczorek, T. (1991). Geometric methods in the theory of singular 2D linear systems, Kybernetika 27(3): 262-270.
  6. Fornasini, E. and Marchesini, G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties, Mathematical System Theory 12: 59-72.10.1007/BF01776566
  7. Kaczorek, T. (1992). Linear Control Systems, Vol. 2, Wiley, New York, NY.
  8. Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  9. Kaczorek, T. (2007). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London.10.1007/978-1-84628-605-6
  10. Kailath, T. (1980). Linear Systems, Prentice Hall, Englewood Cliffs, NJ.
  11. Karmanciolu, A. and Lewis, F. L. (1990). A geometric approach to 2-D implicit systems, Proceedings of the 29th Conference on Decision and Control, Honolulu, HI, USA.10.1109/CDC.1990.203643
  12. Karmanciolu, A. and Lewis, F. L. (1992). Geometric theory for the singular Roesser model, IEEE Transactions on Automatics Control AC-37(6): 801-806.10.1109/9.256336
  13. Kurek, J. (1985). The general state-space model for a two-dimensional linear digital systems, IEEE Transactions on Automatics Control AC-30(6): 600-602.10.1109/TAC.1985.1103998
  14. Malabre, M., Martínez-García, J. and Del-Muro-Cuéllar, B. (1997). On the fixed poles for disturbance rejection, Automatica 33(6): 1209-1211.10.1016/S0005-1098(97)00043-5
  15. Ntogramatzis, L. (2010). A geometric theory for 2-D systems, Multidimensional Systems and Signal Processing, (submitted).
  16. Roesser, R. P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-10.10.1109/TAC.1975.1100844
  17. Wonham, W. M. (1979). Linear Multivariable Control: A Geometric Approach, Springer, New York, NY.10.1007/978-1-4684-0068-7
  18. Żak S. (2003). Systems and Control, Oxford University Press, New York, NY.
DOI: https://doi.org/10.2478/v10006-010-0037-z | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 507 - 512
Published on: Sep 27, 2010
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Tadeusz Kaczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 3 (September 2010)