Have a personal or library account? Click to login
A complete gradient clustering algorithm formed with kernel estimators Cover

A complete gradient clustering algorithm formed with kernel estimators

Open Access
|Mar 2010

Abstract

The aim of this paper is to provide a gradient clustering algorithm in its complete form, suitable for direct use without requiring a deeper statistical knowledge. The values of all parameters are effectively calculated using optimizing procedures. Moreover, an illustrative analysis of the meaning of particular parameters is shown, followed by the effects resulting from possible modifications with respect to their primarily assigned optimal values. The proposed algorithm does not demand strict assumptions regarding the desired number of clusters, which allows the obtained number to be better suited to a real data structure. Moreover, a feature specific to it is the possibility to influence the proportion between the number of clusters in areas where data elements are dense as opposed to their sparse regions. Finally, the algorithm—by the detection of oneelement clusters—allows identifying atypical elements, which enables their elimination or possible designation to bigger clusters, thus increasing the homogeneity of the data set.

DOI: https://doi.org/10.2478/v10006-010-0009-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 123 - 134
Published on: Mar 25, 2010
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Piotr Kulczycki, Małgorzata Charytanowicz, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 1 (March 2010)