Have a personal or library account? Click to login
A biologically inspired approach to feasible gait learning for a hexapod robot Cover

A biologically inspired approach to feasible gait learning for a hexapod robot

Open Access
|Mar 2010

References

  1. Albiez, J. and Berns, K. (2004). Biological inspired walking—How much nature do we need?, in M. A. Armada and P. de González Santos (Eds), Climbing and Walking Robots. Proceedings of the 7th International Conference CLAWAR 2004, Springer, Berlin, pp. 357-364.
  2. Annunziato, M. and Pizzuti, S. (2000). Adaptive parameterization of evolutionary algorithms driven by reproduction and competition, Proceedings of the European Symposium on Intelligent Techniques (ESIT 2000), Aachen, Germany, pp. 31-35.
  3. Arabas, J. (2001). Lectures on Evolutionary Algorithms, WNT, Warsaw, (in Polish).
  4. Bäck, T., Hoffmeister, F. and H.-P. Schwefel (1991). A survey of evolution strategies, in R. K. Belew and L. B. Booker (Eds), Proceedings of the 4th International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, pp. 2-9.
  5. Barfoot, T. D., Earon, E. J. P. and D'Eleuterio, G. M. T. (2006). Experiments in learning distributed control for a hexapod robot, Robotics and Autonomous Systems 54(10): 864-872.10.1016/j.robot.2006.04.009
  6. Beer, R. D., Quinn, R. D., Chiel, H. J. and Ritzmann, R. E. (1997). Biologically inspired approaches to robotics: What can we learn from insects?, Communications of the ACM 40(3): 31-38.10.1145/245108.245118
  7. Belter, D., Kasiński, A. and Skrzypczyński, P. (2008). Evolving feasible gaits for a hexapod robot by reducing the space of possible solutions, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 2673-2678.
  8. Belter, D. and Skrzypczyński, P. (2009). Population based methods for identification and optimization of a walking robot model, in K. Kozlowski (Ed.), Robot Motion and Control 2009, Lecture Notes in Control and Information Sciences, Vol. 396, Springer, Berlin, pp. 185-195.10.1007/978-1-84882-985-5_18
  9. Busch, J., Ziegler, J., Aue, C., Ross, A., Sawitzki, D. and Banzhaf, W. (2002). Automatic generation of control programs for walking robots using genetic programming, in J. Foster, E. Lutton, J. Miller, C. Ryan and A. Tettamanzi (Eds), Genetic Programming, Proceedings of the 5th European Conference EuroGP 2002, Lecture Notes in Computer Science, Vol. 2278, Springer, Berlin, pp. 258-267.10.1007/3-540-45984-7_25
  10. Chernova, S. and Veloso, M. (2004). An evolutionary approach to gait learning for four-legged robots, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, New Orleans, LA, USA, pp. 2562-2567.
  11. Dorigo, M. and Colombetti, M. (1997). Robot Shaping: An Experiment in Behavior Engineering, MIT Press, Cambridge, MA.10.7551/mitpress/5988.001.0001
  12. Figliolini, G., Stan, S.-D. and Rea, P. (2007). Motion analysis of the leg tip of a six-legged walking robot, Proceedings of the 12th IFToMM World Congress, Besançon, France, (on CD-ROM).
  13. Fukuoka, Y., Kimura, H. and Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts, International Journal on Robotics Research 22(4): 187-202.10.1177/0278364903022003004
  14. Gallagher, J., Beer, D. R., Espenschied, K. and Quinn, R. D. (1996). Application of evolved locomotion controllers to a hexapod robot, Robotics and Autonomous Systems 19(1): 95-103.10.1016/S0921-8890(96)00036-X
  15. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.
  16. Holland, J. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
  17. Hornby, G., Takamura, S., Yamamoto, T. and Fujita, M. (2005). Autonomous evolution of dynamic gaits with two quadruped robots, IEEE Transactions on Robotics 21(3): 402-410.10.1109/TRO.2004.839222
  18. Huber, M. and Grupen, R. A. (1997). A feedback control structure for on-line learning tasks, Robotics and Autonomous Systems 22(3-4): 303-315.10.1016/S0921-8890(97)00044-4
  19. Jakobi, N. (1998). Running across the reality gap: Octopod locomotion evolved in a minimal simulation, in P. Husbands and J.-A. Meyer (Eds), Evolutionary Robotics. Proceedings of the First European Workshop EvoRobot98, Lecture Notes in Computer Science, Vol. 1468, Springer, Berlin, pp. 39-58.10.1007/3-540-64957-3_63
  20. Jakobi, N., Husbands, P. and Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolutionary robotics, Proceedings of the 3rd European Conference on Articial Life (ECAL'95), Granada, Spain, pp. 704-720.
  21. Kimura, H., Yamashita, T. and Kobayashi, S. (2001). Reinforcement learning of walking behavior for a four-legged robot, Proceedings of the IEEE Conference on Decisions and Control, Orlando, FL, USA, pp. 411-416.
  22. Kirchner, F. (1998). Q-learning of complex behaviours on a six-legged walking machine, Robotics and Autonomous Systems 25(3-4): 256-263.10.1016/S0921-8890(98)00054-2
  23. Kowalczuk, Z. and Białaszewski, T. (2006). Niching mechanisms in evolutionary computations, International Journal of Applied Mathematics and Computer Science 16(1): 59-84.
  24. Kozlowski, K. (1998). Modelling and Identification in Robotics, Springer, Berlin.10.1007/978-1-4471-0429-2
  25. Kumar, V. R. and Waldron, K. J. (1989). Adaptive gait control for a walking robot, Journal of Robotic Systems 6(1): 49-76.10.1002/rob.4620060105
  26. Lewis, M., Fagg, A. and Bekey, G. (1994). Genetic algorithms for gait synthesis in a hexapod robot, in Y. Zheng (Ed.), Recent Trends in Mobile Robots, World Scientific, Singapore, pp. 317-331.10.1142/9789814354301_0011
  27. Luk, B. L., Galt, S. and Chen, S. (2001). Using genetic algorithms to establish efficient walking gaits for an eight-legged robot, International Journal of Systems Science 32(6): 703-713.10.1080/00207720117230
  28. Maes, P. and Brooks, R. A. (1990). Learning to coordinate behaviors, Proceedings of the 8th National Conference on Artificial Intelligence (AAAI 1990), Boston, MA, USA, pp. 796-802.
  29. Mataric, M. and Cliff, D. (1996). Challenges in evolving controllers for physical robots, Robotics and Autonomous Systems 19(1): 67-83.10.1016/S0921-8890(96)00034-6
  30. Parker, G. B. and Mills, J.W. (1999). Adaptive hexapod gait control using anytime learning with fitness biasing, Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, FL, USA, pp. 519-524.
  31. Perry, M. J., Koh, C. G. and Choo, Y. S. (2006). Modified genetic algorithm strategy for structural identification, Automatica 84(8-9): 529-540.10.1016/j.compstruc.2005.11.008
  32. Ridderström, C. (1999). Legged locomotion control—A literature survey, Technical Report TRITA-MMK 1999:27, Royal Institute of Technology, Stockholm.
  33. Ritzmann, R. E., Quinn, R. D. and Fischer, M. C. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots, Arthropod Structure & Development 33(3): 361-379.10.1016/j.asd.2004.05.001
  34. Skrzypczyński, P. (2004a). Experimental validation of the fuzzy reactive behaviours evolved in simulation, in F. Groen, N. Amato, A. Bonarini, E. Yoshida and B. Kröse (Eds), Intelligent Autonomous Systems 8, IOS Press, Amsterdam, pp. 464-471.
  35. Skrzypczyński, P. (2004b). Shaping in a realistic simulation: An approach to learn reactive fuzzy rules, Preprints of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, (on CD-ROM).10.1016/S1474-6670(17)32083-9
  36. Smith, R. (2007). Open dynamics engine http://www.ode.org
  37. Song, S.-M. and Waldron, K. J. (1989). Machines that Walk: The Adaptive Suspension Vehicle, MIT Press, Cambridge, MA.
  38. Svinin, M. M., Yamada, K. and Ueda, K. (2001). Emergent synthesis of motion patterns for locomotion robots, Artificial Intelligence in Engineering 15(4): 353-363.10.1016/S0954-1810(01)00027-9
  39. Tuyls, K., Maes, S. and Manderick, B. (2003). Reinforcement learning in large state spaces: Simulated robotic soccer as a testbed, RoboCup 2002: Robot Soccer World Cup VI, Lecture Notes in Computer Science, Vol. 2752, Springer, Berlin, pp. 319-326.
  40. Walas, K., Belter, D. and Kasiński, A. (2008). Control and environment sensing system for a six-legged robot, Journal of Automation, Mobile Robotics and Intelligent Systems 2(3): 26-31.
  41. Walker, J., Garrett, S. and Wilson, M. (2003). Evolving controllers for real robots: A survey of the literature, Adaptive Behavior 11(3): 179-203.10.1177/1059712303113003
  42. Wilson, D. M. (1966). Insect walking, Annaul Reiew of Entomology 11(1): 103-122.10.1146/annurev.en.11.010166.000535
  43. Yang, J.-M. (2009). Fault-tolerant gait planning for a hexapod robot walking over rough terrain, Journal of Intelligent and Robotic Systems 54(4): 613-627.10.1007/s10846-008-9282-x
  44. Zagal, J. C., Ruiz-del-Solar, J. and Vallejos, P. (2004). Back to reality: Crossing the reality gap in evolutionary robotics, Preprints of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, (on CD-ROM).10.1016/S1474-6670(17)32084-0
DOI: https://doi.org/10.2478/v10006-010-0005-7 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 69 - 84
Published on: Mar 25, 2010
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Dominik Belter, Piotr Skrzypczyński, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 1 (March 2010)