Have a personal or library account? Click to login
Local stability conditions for discrete-time cascade locally recurrent neural networks Cover

Local stability conditions for discrete-time cascade locally recurrent neural networks

By: Krzysztof Patan  
Open Access
|Mar 2010

References

  1. Back, A. D. and Tsoi, A. C. (1991). FIR and IIR synapses, A new neural network architecture for time series modelling, Neural Computation 3(3): 375-385.10.1162/neco.1991.3.3.375
  2. Campolucci, P. and Piazza, F. (2000). Intrinsic stability-control method for recursive filters and neural networks, IEEE Transactions on Circuit and Systems—II: Analog and Digital Signal Processing 47(8): 797-802.10.1109/82.861421
  3. Cannas, B., Cincotti, S., Marchesi, M. and Pilo, F. (2001). Learnig of Chua's circuit attractors by locally recurrent neural networks, Chaos Solitons & Fractals 12(11): 2109-2115.10.1016/S0960-0779(00)00174-0
  4. Cao, J., Yuan, K. and Li, H. (2006). Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays, IEEE Transactions on Neural Networks 17(6): 1646-1651.10.1109/TNN.2006.88148817131679
  5. Ensari, T. and Arik, S. (2005). Global stability analysis of neural networks with multiple time varying delays, IEEE Transactions on Automatic Control 50(11): 1781-1785.10.1109/TAC.2005.858634
  6. Fasconi, P., Gori, M. and Soda, G. (1992). Local feedback multilayered networks, Neural Computation 4(1): 120-130.10.1162/neco.1992.4.1.120
  7. Forti, M., Nistri, P. and Papini, D. (2005). Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain, IEEE Transactions on Neural Networks 16(6): 1449-1463.10.1109/TNN.2005.852862
  8. Gori, M., Bengio, Y. and Mori, R. D. (1989). BPS: A learning algorithm for capturing the dynamic nature of speech, International Joint Conference on Neural Networks, Washington DC, USA, Vol. II, pp. 417-423.
  9. Gupta, M. M., Jin, L. and Homma, N. (2003). Static and Dynamic Neural Networks. From Fundamentals to Advanced Theory, John Wiley & Sons, Hoboken, NJ.10.1002/0471427950
  10. Gupta, M. M. and Rao, D. H. (1993). Dynamic neural units with application to the control of unknown nonlinear systems, Journal of Intelligent and Fuzzy Systems 1(1): 73-92.10.3233/IFS-1993-1108
  11. Marcu, T., Mirea, L. and Frank, P. M. (1999). Development of dynamical neural networks with application to observer based fault detection and isolation, International Journal of Applied Mathematics and Computer Science 9(3): 547-570.
  12. Patan, K. (2007). Stability analysis and the stabilization of a class of discrete-time dynamic neural network, IEEE Transactions on Neural Networks 18(3): 660-673.10.1109/TNN.2007.89119917526334
  13. Patan, K. (2008a). Aproximation of state-space trajectories by locally recurrent globally feed-forward neural networks, Neural Networks 21(1): 59-64.10.1016/j.neunet.2007.10.004
  14. Patan, K. (2008b). Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, Lecture Notes in Control and Information Sciences, Vol. 377, Springer-Verlag, Berlin.
  15. Patan, K. (2008c). Stability criteria for three-layer locally recurrent networks, Proceedings of the 17th IFAC World Congress on Automatic Control, Seoul, Korea, (on CDROM).10.3182/20080706-5-KR-1001.00918
  16. Patan, K. and Parisini, T. (2005). Identification of neural dynamic models for fault detection and isolation: The case of a real sugar evaporation process, Journal of Process Control 15(1): 67-79.10.1016/j.jprocont.2004.04.001
  17. Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematics and Computer Science 18(4): 443-454, DOI: 10.2478/v10006-008-0039-2.10.2478/v10006-008-0039-2
  18. Tsoi, A. C. and Back, A. D. (1994). Locally recurrent globally feedforward networks: A critical review of architectures, IEEE Transactions on Neural Networks 5(2): 229-239.10.1109/72.279187
  19. Xiang-Qun, L. and Zhang, H. Y. (2000). Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network, IEEE Transactions on Industrial Electronics 47(5): 1021-1030.10.1109/41.873210
  20. Zhang, J., Morris, A. J. and Martin, E. B. (1998). Long term prediction models based on mixed order locally recurrent neural networks, Computers Chemical Engineering 22(7-8): 1051-1063.10.1016/S0098-1354(97)00269-X
DOI: https://doi.org/10.2478/v10006-010-0002-x | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 23 - 34
Published on: Mar 25, 2010
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Krzysztof Patan, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 20 (2010): Issue 1 (March 2010)