Have a personal or library account? Click to login
Indirect adaptive controller based on a self-structuring fuzzy system for nonlinear modeling and control Cover

Indirect adaptive controller based on a self-structuring fuzzy system for nonlinear modeling and control

By: Ruiyun Qi and  Mietek Brdys  
Open Access
|Dec 2009

References

  1. Angelov, P. P. and Filev, D. P. (2004). An approach to online identification of Takagi-Sugeno fuzzy models, IEEE Transactions on System, Man and Cybernetics—Part B: Cybernetics 34(1): 484-498.10.1109/TSMCB.2003.817053
  2. Bezdek, J. (1974). Comparing different approaches to model error modeling in robust identification, Journal of Cybernetics 3(3): 58-71.
  3. Chen, F. and Khalil, H. (1995). Adaptive control of a class of nonlinear discrete-time systems using neural networks, IEEE Transactions on Automatic Control 40(5): 791-801.10.1109/9.384214
  4. Chien, C.-J., C.-T. H. and Yao, C.-Y. (2004). Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors, IEEE Transactions on Fuzzy Systems 12(5): 724-732.10.1109/TFUZZ.2004.834806
  5. Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation, International Journal of Fuzzy Systems 2: 267-278.10.3233/IFS-1994-2306
  6. Gao, Y. and Er, M. J. (2003). Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems, IEEE Transactions on Fuzzy Systems 11(4): 462-477.10.1109/TFUZZ.2003.814833
  7. Gustafson, D. E. and Kessel, W. C. (1979). Global random optimization by simultaneous perturbation stochastic approximation, Proceedings of the IEEE Control Decision Conference, San Diego, CA, USA, pp. 761-766.
  8. Hao, Y. (1998). General SISO Takagi-Sugeno fuzzy system with linear rule consequent are universal approximators, IEEE Transactions on Fuzzy Systems 6(4): 582-587.10.1109/91.728456
  9. Hao, Y., Y. D.-S. L. and Shao, S. (1999). Comparison of necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators, IEEE Transactions on System, Man and Cybernetics—Part B: Cybernetics 29(5): 508-514.10.1109/3468.784177
  10. Ogata, K. (1995). Discrete-time Control System, 2nd Ed., Prentice-Hall, Upper Saddle River, NJ.
  11. Park, C.-W. and Cho, Y.-W. (2004). T-S model based indirect adaptive fuzzy control using online parameter estimation, IEEE Transactions on System, Man and Cybernetics—Part B: Cybernetics 34(6): 2293-2302.10.1109/TSMCB.2004.83507915619930
  12. Phan, P. A. and Gale, T. J. (2008). Direct adaptive fuzzy control with a self-structuring algorithm, Fuzzy Sets and Systems 159(8): 871-899.10.1016/j.fss.2007.09.012
  13. Qi, R. and Brdys, M. A. (2008). Stable indirect adaptive control based on discrete-time T-S fuzzy model, Fuzzy Sets and Systems 159(8): 900-925.10.1016/j.fss.2007.08.009
  14. Wang, L. (1994). Adaptive Fuzzy System and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, NJ.
DOI: https://doi.org/10.2478/v10006-009-0049-8 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 619 - 630
Published on: Dec 31, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Ruiyun Qi, Mietek Brdys, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 4 (December 2009)