Have a personal or library account? Click to login
Verification Techniques for Sensitivity Analysis and Design of Controllers for Nonlinear Dynamic Systems with Uncertainties Cover

Verification Techniques for Sensitivity Analysis and Design of Controllers for Nonlinear Dynamic Systems with Uncertainties

Open Access
|Sep 2009

References

  1. Ackermann, J., Blue, P., Bünte, T., Güvenc, L., Kaesbauer, D., Kordt, M., Muhler, M. and Odenthal, D. (2002). Robust Control: The Parameter Space Approach, 2nd Edn., Springer-Verlag, London.
  2. Aschemann, H., Rauh, A., Kletting, M. and Hofer, E. P. (2006). Flatness-based control of a simplified wastewater treatment plant, Proceedings of the IEEE International Conference on Control Applications CCA 2006, Munich, Germany, pp. 2243-2248.
  3. Auer, E., Rauh, A., Hofer, E. P. and Luther, W. (2008). Validated modeling of mechanical systems with SmartMOBILE: Improvement of performance by ValEncIA-IVP, Proceedings of the Dagstuhl Seminar 06021: Reliable Implementation of Real Number Algorithms. Theory and Practice, Dagstuhl, Germany, Lecture Notes in Computer Science, Vol. 5045, Springer-Verlag, Berlin/Heidelberg, pp. 1-27.
  4. Bendsten, C. and Stauning, O. (2007). FADBAD++, Version 2.1, available at: http://www.fadbad.com
  5. Bünte, T. (2000). Mapping of Nyquist/Popov theta-stability margins into parameter space, Proceedings of the 3rd IFAC Symposium on Robust Control Design, Prague, Czech Republic.10.1016/S1474-6670(17)36281-X
  6. Delanoue, N. (2006). Algoritmes numériques pour l'analyse topologique—Analyse par intervalles et théorie des graphes, Ph.D. thesis, École Doctorale d'Angers, Angers, (in French).
  7. Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of nonlinear systems: Introductory theory and examples, International Journal of Control 61(6): 1327-1361.10.1080/00207179508921959
  8. Hammersley, J. M. and Handscomb, D. C. (1964). Monte-Carlo Methods, John Wiley & Sons, New York, NY.10.1007/978-94-009-5819-7
  9. Henze, M., Harremoës, P., Arvin, E. and la Cour Jansen, J. (2002). Wastewater Treatment, 3rd Edn., Springer-Verlag, Berlin.
  10. Hermann, R. and Krener, A. J. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control 22(5): 728-740.10.1109/TAC.1977.1101601
  11. Isidori, A. (1989). Nonlinear Control Systems, 2nd Edn., Springer-Verlag, Berlin.
  12. Keil, C. (2007). Profil/BIAS, Version 2.0.4, Available at: www.ti3.tu-harburg.de/keil/profil/
  13. Khalil, H. K. (2002). Nonlinear Systems, 3rd Edn., Prentice-Hall, Upper Saddle River, NJ.
  14. Marquez, H. J. (2003). Nonlinear Control Systems, John Wiley & Sons, Inc., Hoboken, NJ.
  15. Odenthal, D. and Blue, P. (2000). Mapping of frequency response magnitude specifications into parameter space, Proceedings of the 3rd IFAC Symposium on Robust Control Design, Prague, Czech Republic.10.1016/S1474-6670(17)36283-3
  16. Office for Official Publications of the European Communities (2003). Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment (91/271/EEC), Available at: http://ec.europa.eu/environment/water/water-urbanwaste/directiv.html
  17. Rauh, A., Auer, E. and Hofer, E. P. (2007a). ValEncIA-IVP:A comparison with other initial value problem solvers, Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos, CA, (on CD-ROM).10.1109/SCAN.2006.47
  18. Rauh, A., Auer, E., Minisini, J. and Hofer, E. P. (2007b). Extensions of ValEncIA-IVP for reduction of overestimation, for simulation of differential algebraic systems, and for dynamical optimization, PAMM 7(1): 1023001-1023002.10.1002/pamm.200700022
  19. Rauh, A., Kletting, M., Aschemann, H. and Hofer, E. P. (2007c). Reduction of overestimation in interval arithmetic simulation of biological wastewater treatment processes, Journal of Computational and Applied Mathematics 199(2): 207-212.10.1016/j.cam.2005.07.029
  20. Rauh, A., Minisini, J. and Hofer, E. P. (2007d). Interval techniques for design of optimal and robust control strategies, Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos, CA, (on CD-ROM).10.1109/SCAN.2006.27
  21. Rauh, A. and Hofer, E. P. (2005). Interval arithmetic optimization techniques for uncertain discrete-time systems, Proceedings of the 13th International Workshop on Dynamics and Control, Modeling and Control of Autonomous Decision Support Based Systems, Wiesensteig, Germany, Shaker Verlag, Aachen, pp. 141-148.
  22. Rauh, A. and Hofer, E. P. (2009). Interval methods for optimal control, Proceedings of the 47th Workshop on Variational Analysis and Aerospace Engineering 2007, Erice, Italy, Springer-Verlag, New York, NY, pp. 397-418.
  23. Rauh, A., Minisini, J. and Hofer, E. P. (2009). Towards the development of an interval arithmetic environment for validated computer-aided design and verification of systems in control engineering, Proceedings of the Dagstuhl Seminar 08021: Numerical Validation in Current Hardware Architectures, Dagstuhl, Germany, Lecture Notes in Computer Science, Vol. 5492, Springer-Verlag, Berlin/Heidelberg, pp. 175-188.
  24. Röbenack, K. (2002). On the efficient computation of higher order maps adfkg(x) using Taylor arithmetic and the Campbell-Baker-Hausdorff formula, in A. Zinober and D. Owens (Eds.), Nonlinear and Adaptive Control, Lecture Notes in Control and Information Science, Vol. 281, Springer, Berlin/Heidelberg, pp. 327-336.
  25. Rohn, J. (1994). Positive definiteness and stability of interval matrices, SIAM Journal on Matrix Analysis and Applications 15(1): 175-184.10.1137/S0895479891219216
  26. Rump, S. M. (2007). IntLab, Version 5.4, available at: http://www.ti3.tu-harburg.de/~rump/intlab/
  27. Sienel, W., Bünte, T. and Ackermann, J. (1996). PARADISE—Parametric robust analysis and design interactive software environment: A Matlab-based robust control toolbox, Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design, Dearborn, MI, USA, pp. 380-385.
  28. Sontag, E. D. (1998). Mathematical Control Theory—Deterministic Finite Dimensional Systems, Springer-Verlag, New York, NY.
DOI: https://doi.org/10.2478/v10006-009-0035-1 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 425 - 439
Published on: Sep 24, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Andreas Rauh, Johanna Minisini, Eberhard Hofer, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 3 (September 2009)