Have a personal or library account? Click to login
Interval Analysis for Certified Numerical Solution of Problems in Robotics Cover

Interval Analysis for Certified Numerical Solution of Problems in Robotics

Open Access
|Sep 2009

References

  1. Ashokaraj, I., Tsourdos, A., Silson, P. and White, B. A. (2004). Sensor based robot localisation and navigation: Using interval analysis and extended Kalman filter, Proceedings of the 5th Asian Control Conference, Melbourne, Australia.10.1109/IROS.2004.1389321
  2. Carreras, C. and Walker, I. (2001). Interval methods for faulttree analysis in robotics, IEEE Transactions on Reliability 50(1): 3-11.10.1109/24.935010
  3. Chablat, D., Wenger, P. and Merlet, J.-P. (2004). A comparative study between two three-dof parallel kinematic machines using kinetostatic criteria and interval analysis, Proceedings of the 11th IFToMM World Congress on the Theory of Machines and Mechanisms, Tianjin, China, pp. 1209-1213.
  4. Chablat, D., Wenger, P. and Merlet, J.-P. (2002). Workspace analysis of the Orthoglide using interval analysis, Advances in Robot Kinematics, Caldes de Malavalla, Spain, pp. 397-406.
  5. Clerentin, A., Delahoche, L., Brassart, E. and Izri, S. (2003). Imprecision and uncertainty quantification for the problem of mobile robot localization, Proceedings of the Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD, USA.
  6. Daney, D., Andreff, N., Chabert, G. and Papegay, Y. (2006). Interval method for calibration of parallel robots: A visionbased experimentation, Mechanism and Machine Theory 41(8): 929-944.10.1016/j.mechmachtheory.2006.03.014
  7. Das, I. and Dennis, J. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problem, Structural Optimization 14: 63-69.10.1007/BF01197559
  8. Didrit, O. (1997). Analyse par intervalles pour l'automatique; Résolution globale et garantie de problèmes non linéaires en robotique et en commande robuste, Ph.D. thesis, Université Paris XI Orsay, Paris.
  9. Dietmaier, P. (1998). The Stewart-Gough platform of general geometry can have 40 real postures, Advances in Robot Kinematics, Strobl, Austria, pp. 7-16.
  10. Drocourt, C., Delahoche, L., Brassart, E., Marhic, B. and Clerentin, A. (2003). Incremental construction of the robot's environmental map using interval analysis, Proceedings of the 2nd International Workshop on Global Constrained Optimization and Constraint Satisfaction (COCOS'03), Lausanne, Switzerland.
  11. Fang, H. and Merlet, J.-P. (2005). Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and Machine Theory 40(2): 151-171.10.1016/j.mechmachtheory.2004.07.002
  12. Gough, V. and Whitehall, S. (1962). Universal tire test machine, Proceedings of the 9th International Technical Congress F. I. S. I. T. A., London, UK, Vol. 117, pp. 117-135.
  13. Hansen, E. (2004). Global Optimization Using Interval Analysis, Marcel Dekker, New York, NY.10.1201/9780203026922
  14. Hubert, J. and Merlet, J.-P. (2008). Singularity analysis through static analysis, Advances in Robot Kinematics, Batz/mer, France, pp. 13-20.
  15. Innocenti, C. (2001). Forward kinematics in polynomial form of the general Stewart platform, ASME Journal of Mechanical Design 123(2): 254-260.10.1115/1.1348018
  16. Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis, Springer-Verlag, Heidelberg.10.1007/978-1-4471-0249-6
  17. Kearfott, R. and Manuel, N. I. (1990). INTBIS, a portable interval Newton/Bisection package, ACM Transactions on Mathematical Software 16(2): 152-157.10.1145/78928.78931
  18. Kieffer, M., Jaulin, L., Walter, E. and Meizel, D. (2000). Robust autonomous robot localization using interval analysis, Reliable Computing 6(3): 337-362.10.1023/A:1009990700281
  19. Kreinovich, V. (2000). Optimal finite characterization of linear problems with inexact data, Technical Report CS-00-37, University of Texas at El Paso, TX.
  20. Kreinovich, V., Lakeyev, A., Rohn, J. and Kahl, P. (1998). Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht.10.1007/978-1-4757-2793-7
  21. Lebbah, Y., Michel, C., Rueher, M., Merlet, J.-P. and Daney, D. (2004). Combining local consistencies with a new global filtering algorithm on linear relaxations, SIAM Journal of Numerical Analysis, 42(2076).10.1137/S0036142903436174
  22. Merlet, J.-P. (2004). Solving the forward kinematics of a Goughtype parallel manipulator with interval analysis, International Journal of Robotics Research 23(3): 221-236.10.1177/0278364904039806
  23. Merlet, J.-P. (2000). ALIAS: An interval analysis based library for solving and analyzing system of equations, SEA, Toulouse, France.
  24. Merlet, J.-P. (1989). Singular configurations of parallel manipulators and Grassmann geometry, International Journal of Robotics Research 8(5): 45-56.10.1177/027836498900800504
  25. Merlet, J.-P. and Donelan, P. (2006). On the regularity of the inverse jacobian of parallel robot, Advances in Robot Kinematics, Ljubljana, Slovenia, pp. 41-48.
  26. Moore, R. (1979). Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA.
  27. Neumaier, A. (1990). Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.10.1017/CBO9780511526473
  28. Neumaier, A. (2001). Introduction to Numerical Analysis, Cambridge University Press, Cambridge.10.1017/CBO9780511612916
  29. Piazzi, A. and Visioli, A. (2000). Global minimum-jerk trajectory planning of robot manipulators, Transactions on Industrial Electronics 47(1): 140-149.10.1109/41.824136
  30. Rao, R., Asaithambi, A. and Agrawal, S. (1998). Inverse kinematic solution of robot manipulators using interval analysis, Journal of Mechanical Design 120(1): 147-150.10.1115/1.2826667
  31. Redon, S. et al. (2004). Fast continuous collision detection for articulated models, Proceedings of the 9th ACM Symposium on Solid Modeling and Applications, Genoa, Italy, pp. 145-156.
  32. Rex, G. and Rohn, J. (1998). Sufficient conditions for regularity and singularity of interval matrices, SIAM Journal on Matrix Analysis and Applications 20(2): 437-445.10.1137/S0895479896310743
  33. Ronga, F. and Vust, T. (1992). Stewart platforms without computer?, Proceedings of the Conference on Real Analytic and Algebraic Geometry, Trento, Italy, pp. 197-212.
  34. Rouillier, F. (1995). Real roots counting for some robotics problems, in B. R. J.-P. Merlet (Ed.), Computational Kinematics, Kluwer, Dordrecht, pp. 73-82.10.1007/978-94-011-0333-6_8
  35. Seignez, E., Kieffer, M., Lambert, A., Walter, E. and Maurin, T. (2005). Experimental vehicle localization by boundederror state estimation using interval analysis, IEEE/RJS IROS, Edmonton, Canada.10.1109/IROS.2005.1545155
  36. Tapia, R. (1971). The Kantorovitch theorem for Newton's method, American Mathematic Monthly 78(1.ea): 389-392.
  37. Wampler, C. (1996). Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates, Mechanism and Machine Theory 31(3): 331-337.10.1016/0094-114X(95)00068-A
  38. Wu, W. and Rao, S. (2004). Interval approach for the modeling of tolerances and clearances in mechanism analysis, Journal of Mechanical Design 126(4): 581-592.10.1115/1.1760775
DOI: https://doi.org/10.2478/v10006-009-0033-3 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 399 - 412
Published on: Sep 24, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Jean-Pierre Merlet, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 3 (September 2009)