Have a personal or library account? Click to login
Ensemble Neural Network Approach for Accurate Load Forecasting in a Power System Cover

Ensemble Neural Network Approach for Accurate Load Forecasting in a Power System

Open Access
|Jul 2009

References

  1. Afkhami-Rohani, K. R. and Maratukulam, D. (1998). ANNSTLF—Artificial neural network short-term load forecaster—Generation three, IEEE Transactions on Power Systems 13(4): 1413-1422.10.1109/59.736285
  2. Belouchrani, A., Abed-Meraim, K., Cardoso, J. and Moulines, E. (1997). A BSS technique using SOS, IEEE Transactions on Signal Processing 45(2): 434-444.10.1109/78.554307
  3. Choi, S., Cichocki, A. and Belouchrani, A. (2002). Second order nonstationary source separation, Journal of VLSI Signal Processing 32(1-2): 93-104.10.1023/A:1016319502849
  4. Cichocki, A. and Amari, S. I. (2003). Adaptive Blind Signal and Image Processing, Wiley, New York, NY.10.1002/0470845899
  5. Cichocki, A., Amari, S., Siwek, K. and Tanaka, T. (2009). ICALAB Toolboxes, RIKEN, Tokyo, Available at: http://www.bsp.brain.riken.jp/ICALAB. http://www.bsp.brain.riken.jp/ICALAB
  6. Cottrell, M., Girard, B., Girard, Y., Muller, C. and Rousset, P. (1995). Daily electrical power curve: Classification and forecasting using a Kohonen map, Proceedings of the International Workshop on Artificial Neutral Networks, IWANN, Malaga, Spain, pp. 1107-1113.
  7. Diamantras, K. and Kung, S. Y. (1996). Principal Component Neural Networks, Wiley, New York, NY.
  8. Drezga, I. and Rahman, S. (1998). Input variable selection for ANN-based short-term load forecasting, IEEE Transactions on Power Systems 13(4): 1238-1244.10.1109/59.736244
  9. Fidalgo, J. N. and Pecas Lopez, J. (2005). Load forecasting performance enhancement when facing anomalous events, IEEE Transations on Power Systems 20(2): 408-415.10.1109/TPWRS.2004.840439
  10. Golub, G. and Van Loan, C. (1991). Matrix Computations, Academic Press, New York, NY.
  11. Gonzalez-Romera, E., Jaramillo-Moran, M. A. and Carmona- Fernandez, D. (2006). Monthly electric energy demand forecasting based on trend extraction, IEEE Transations on Power Systems 21(4): 1946-1953.10.1109/TPWRS.2006.883666
  12. Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3(3): 1158-1182.
  13. Haykin, S. (2002). Neural Networks. A Comprehensive Foundation, Macmillan, New York, NY.
  14. Hippert, H. S., Pedreira, C. E. and Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation, IEEE Transations on Power Systems 16(1): 44-55.10.1109/59.910780
  15. Kandil, N., Wamkeue, R., Saad, M. and Georges, S. (2006). An efficient approach for short term load forecasting using artificial neural networks, Electrical Power and Energy Systems 28(4): 525-530.10.1016/j.ijepes.2006.02.014
  16. Kiartzis, S. J., Zoumas, C. E., Theocharis, J., Bakirtzis, A. G. and Petridis, V. (1997). Short-term load forecasting in an autonomous power system using artificial neural networks, IEEE Transations on Power Systems 12(4): 1591-1596.10.1109/59.627863
  17. Kuntcheva, L. (2004). Combining Pattern Classifiers—Methods and Algorithms, Wiley, New York, NY.10.1002/0471660264
  18. Lendasse, A., Cottrell, M., Wertz, V. and Verleysen, M. (2002). Prediction of electric load using kohonen maps—Application to the Polish electricity consumption, Proceedings of the American Control Conference, Anchorage, AK, USA, Vol. 28, pp. 3684-3688.
  19. Ljung, L. (1999). System Identification—Theory for the User, PTR Prentice Hall, Upper Saddle River, NJ.
  20. Mandal, P., Senjyu, T., Urasaki, N. and Funabashi, T. (2006). A neural network based several hours ahead electric load forecasting using similar days approach, Electrical Power and Energy Systems 28(3): 367-373.10.1016/j.ijepes.2005.12.007
  21. Nikias, L. and Petropulu, A. P. (1993). Higher-Order Spectral Analysis—A Nonlinear Signal Processing Framework, Prentice Hall, Upper Saddle River, NJ.
  22. Osowski, S. (2006). Neural Networks for Information Processing, Warsaw University of Technology Press, Warsaw, (in Polish).
  23. Osowski, S. and Siwek, K. (1999). The self-organizing neural network approach to load forecasting in power system, Proceedings of the International Joint Conference on Neural Networks, Washington, DC, USA, Vol. 28, pp. 1345-1348.
  24. Osowski, S. and Siwek, K. (2002). Regularization of neural networks for load forecasting in power system, IEE Proceedings GTD 149(3): 340-345.10.1049/ip-gtd:20020194
  25. Sorjamaa, A., Hao, J., Reyhani, N., Li, Y. and Lendasse, A. (2007). Methodology for long-term prediction of time series, Neurocomputing 70(16-18): 2861-2869.10.1016/j.neucom.2006.06.015
  26. Yalcinoz, T. and Eminoglu, U. (2005). Short term and medium term power distribution load forecasting by neural networks, Energy Conversion and Management 46(8): 1393-1405.10.1016/j.enconman.2004.07.005
DOI: https://doi.org/10.2478/v10006-009-0026-2 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 303 - 315
Published on: Jul 8, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Krzysztof Siwek, Stanisław Osowski, Ryszard Szupiluk, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 2 (June 2009)