Have a personal or library account? Click to login
Independence of Asymptotic Stability of Positive 2D Linear Systems with Delays of Their Delays Cover

Independence of Asymptotic Stability of Positive 2D Linear Systems with Delays of Their Delays

Open Access
|Jul 2009

References

  1. Bose, N.K. (1982). Applied Multidimensional System Theory, Van Nostrand Reinhold Co., New York, NY.
  2. Bose, N.K. (1985). Multidimensional Systems Theory Progress: Directions and Open Problems, D. Reineld Publishing Co., Dordrecht.
  3. Busłowicz, M. (2007). Robust stability of positive discrete-time linear systems with multiple delays with linear unity rank uncertainty structure or non-negative perturbation matrices, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(1): 1-5.
  4. Busłowicz, M. (2008a). Robust stability of convex combination of two fractional degree characteristic polynomials, Acta Mechanica et Automatica 2(2): 5-10.
  5. Busłowicz, M. (2008b). Simple stability conditions for linear positive discrete-time systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(1): 325-328.
  6. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.10.1002/9781118033029
  7. Fornasini, E. and Marchesini, G. (1976). State-space realization theory of two-dimensional filters, IEEE Transactions on Automatic Control AC-21: 481-491.10.1109/TAC.1976.1101305
  8. Fornasini, E. and Marchesini, G. (1978). Double indexed dynamical systems, Mathematical Systems Theory 12: 59-72.10.1007/BF01776566
  9. Gałkowski, K. (1997). Elementary operation approach to state space realization of 2D systems, IEEE Transactions on Circuit and Systems 44: 120-129.10.1109/81.554329
  10. Gałkowski, K. (2001). State Space Realizations of Linear 2D Systems with Extensions to the General nD (n>2) Case, Springer-Verlag, London.
  11. Hmamed, A., Ait, Rami, M. and Alfidi, M. (2008). Controller synthesis for positive 2D systems described by the Roesser model, IEEE Transactions on Circuits and Systems, (submitted).10.1109/CDC.2008.4739294
  12. Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer-Verlag, Berlin.10.1007/BFb0005617
  13. Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.10.1007/978-1-4471-0221-2
  14. Kaczorek, T. (2009a). Asymptotic stability of positive 2D linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(1), (in press).10.2478/v10175-010-0113-4
  15. Kaczorek, T. (2009b). Asymptotic stability of positive 2D linear systems, Proceedings of the 14-th Scientific Conference on Computer Applications in Electrical Engineering, Poznań, Poland, pp. 1-11.
  16. Kaczorek, T. (2009c). LMI approach to stability of 2D positive systems, Multidimensional Systems and Signal Processing 20: 39-54.10.1007/s11045-008-0050-7
  17. Kaczorek, T. (2008a). Asymptotic stability of positive 1D and 2D linear systems, Recent Advances in Control and Automation, Academic Publishing House EXIT, pp. 41-52.
  18. Kaczorek, T. (2008c). Checking of the asymptotic stability of positive 2D linear systems with delays, Proceedings of the Conference on Computer Systems Aided Science and Engineering Work in Transport, Mechanics and Electrical Engineering, TransComp, Zakopane, Poland, Monograph No. 122, pp. 235-250, Technical University of Radom, Radom.
  19. Kaczorek, T. (2007). Choice of the forms of Lyapunov functions for positive 2D Roesser model, International Journal Applied Mathematics and Computer Science 17(4): 471-475.10.2478/v10006-007-0039-7
  20. Kaczorek, T. (2004). Realization problem for positive 2D systems with delays, Machine Intelligence and Robotic Control 6(2): 61-68.
  21. Kaczorek, T. (1996). Reachability and controllability of non-negative 2D Roesser type models, Bulletin of the Polish Academy of Sciences: Technical Sciences 44(4): 405-410.
  22. Kaczorek, T. (2005). Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34(2): 411-423.
  23. Kaczorek, T. (2006a). Minimal positive realizations for discrete-time systems with state time-delays, International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 25(4): 812-826.10.1108/03321640610684015
  24. Kaczorek, T. (2006b). Positive 2D systems with delays, Proceedings of the 12-th IEEE/IFAC International Conference on Methods in Automation and Robotics, MMAR 2006, Międzyzdroje, Poland.
  25. Kaczorek, T. (2003). Realizations problem for positive discrete-time systems with delays, Systems Science 29(1): 15-29.
  26. Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht.
  27. Kurek, J. (1985). The general state-space model for a two-dimensional linear digital systems, IEEE Transactions on Automatic Control AC-30: 600-602.10.1109/TAC.1985.1103998
  28. Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-1010.1109/TAC.1975.1100844
  29. Valcher, M.E. (1997). On the internal stability and asymptotic behavior of 2D positive systems, IEEE Transactions on Circuits and Systems—I 44(7): 602-613.10.1109/81.596941
DOI: https://doi.org/10.2478/v10006-009-0021-7 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 255 - 261
Published on: Jul 8, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Tadeusz Kaczorek, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 2 (June 2009)