Have a personal or library account? Click to login
Input Constraints Handling in an MPC/Feedback Linearization Scheme Cover

Input Constraints Handling in an MPC/Feedback Linearization Scheme

Open Access
|Jul 2009

References

  1. Ayala-Botto, M., Boom, T. V. D., Krijgsman, A. and da Costa, J. S. (1999). Predictive control based on neural network models with I/O feedback linearization, International Journal of Control 72(17): 1538-1554.10.1080/002071799220038
  2. Ayala-Botto, M., Braake, H. T., da Costa, J. S. and Verbruggen, H. (1996). Constrained nonlinear predictive control based on input-output linearization using a neural network, Proceedings of the 13-th IFAC World Congress, San Francisco, CA, USA, pp. 175-180.
  3. Becerra, V. M., Roberts, P. D. and Griffiths, G. W. (2001). Applying the extended Kalman filter to systems desribed by nonlinear differential-algebraic equations, Control Engineering Practice 9(3): 267-281.10.1016/S0967-0661(00)00110-6
  4. Casavola, A. and Mosca, E. (1996). Reference governor for constrained uncertain linear systems subject to bounded input disturbances, Preceedings of the 35-th Conference on Decision and Control, Kobe, Japan, pp. 3531-3536.
  5. Del-Re, L., Chapuis, J. and Nevistic, V. (1993). Stability of neural net based model predivtive control, Proceedings of the 32-nd Conference on Decision and Control, San Antonio, TX, USA, pp. 2984-2989.
  6. Deng, J. and Becerra, V. M. (2004). Real-time constrained predictive control of a 3d crane system, Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp. 583-587.
  7. Garces, F. (2000). Dynamic Neural Networks for Approximate Input-Output Linearisation-Decoupling of Dynamic Systems, Ph.D. thesis, University of Reading.
  8. Garces, F., Becerra, V., Kambhampati, C. and Warwick, K. (2003). Strategies for Feedback Linearisation: A Dynamic Neural Network Approach, Springer, London.10.1007/978-1-4471-0065-2
  9. Guemghar, K., Srinivasan, B., Mullhaupt, P. and Bonvin, D. (2005). Analysis of cascade structure with predictive control and feedback linearisation, IEE Proceedings: Control Theory and Applications 152(3): 317-324.10.1049/ip-cta:20041309
  10. Henson, M. A. and Kurtz, M. J. (1994). Input-output linearisation of constrained nonlinear processes, Nonlinear Control, AICHE Annual Meeting, San Franciso, CA, USA, pp. 1-20.
  11. Henson, M. A. and Seborg, D. E. (1993). Theoretical analysis of unconstrained nonlinear model predictive control, International Journal of Control 58(5): 1053-1080.10.1080/00207179308923043
  12. Isidori, A. (1995). Nonlinear Control Systems, 2nd Edition, Springer, Berlin/New York, NY.10.1007/978-1-84628-615-5
  13. Kurtz, M. and Henson, M. (1997). Input-output linearizing control of constrained nonlinear processes, Journal of Process Control 7(1): 3-17.10.1016/S0959-1524(96)00006-6
  14. Maciejowski, J. M. (2002). Predictive Control with Constraints, Prentice Hall, London.
  15. Maybeck, P. S. (1982). Stochastic Models, Estimation and Control, Academic Press, New York, NY.
  16. Nevistic, V. (1994). Feasible Suboptimal Model Predictive Control for Linear Plants with State Dependent Constraints, Postdiploma thesis, Swiss Federal Institute of Technology, Automatica Control Laboratory, ETH, Zurich.
  17. Nevistic, V. and Morari, M. (1995). Constrained control of feedback-linearizable systems, Proceedings of the European Control Conference, Rome, Italy, pp. 1726-1731.
  18. Nevistic, V. and Primbs, J. A. (1996). Model predictive control: Breaking through constraints, Proceedings of the 35-th Conference on Decision and Control, Kobe, Japan, pp. 3932-3937.
  19. Oliveiria, S. D., Nevistic, V. and Morari, M. (1995). Control of nonlinear systems subject to input constraints, Preprints of the IFAC Symposium on Nonlinear Control Systems, NOL-COS'95, Tahoe City, CA, USA, Vol. 1, pp. 15-20.
  20. Perttunen, C. D., Jones, D. R. and Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Application 79(1): 157-181.10.1007/BF00941892
  21. Poznyak, A. S., Sanchez, E. N. and Yu, W. (2001). Differential Neural Networks for Robust Nonlinear Control, World Scientific, Singapore.10.1142/4703
  22. Rossiter, J. A. (2003). Model Based Predictive Control: A Practical Approach, CRC Press, Boca Raton, FL, USA.
  23. Scattolini, R. and Colaneri, P. (2007). Hierarchical model predictive control, Proceedings of the 46-th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4803-4808.
  24. van den Boom, T. (1997). Robust nonlinear predictive control using feedback linearization and linear matrix inequalities, Proceedings of the American Control Conference, Albuquerque, NM, USA, pp. 3068-3072.
DOI: https://doi.org/10.2478/v10006-009-0018-2 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 219 - 232
Published on: Jul 8, 2009
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2009 Jiamei Deng, Victor Becerra, Richard Stobart, published by University of Zielona Góra
This work is licensed under the Creative Commons License.

Volume 19 (2009): Issue 2 (June 2009)